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Abstract—Upper limb robotic rehabilitation devices can collect
quantitative data about the user’s movements. Identifying rela-
tionships between robotic sensor data and manual clinical assess-
ment scores would enable more precise tracking of the time course
of recovery after injury and reduce the need for time-consuming
manual assessments by skilled personnel. This study used mea-
surements from robotic rehabilitation sessions to predict clinical
scores in a traumatic cervical spinal cord injury (SCI) population.
A retrospective analysis was conducted on data collected from sub-
jects using the Armeo Spring (Hocoma, AG) in three rehabilitation
centers. Fourteen predictive variables were explored, relating to
range-of-motion, movement smoothness, and grip ability. Regres-
sion models using up to four predictors were developed to describe
the following clinical scores: the GRASSP (consisting of four sub-
scores), the ARAT, and the SCIM. The resulting adjusted R? value
was highest for the GRASSP “Quantitative Prehension” compo-
nent (0.78), and lowest for the GRASSP “Sensibility” component
(0.54). In contrast to comparable studies in stroke survivors, move-
ment smoothness was least beneficial for predicting clinical scores
in SCI. Prediction of upper-limb clinical scores in SCI is feasible
using measurements from a robeotic rehabilitation device, without
the need for dedicated assessment procedures.

Index Terms—Action Research Arm Test (ARAT), Graded and
Redefined Assessment of Strength, Sensibility and Prehension
(GRASSP), regression analysis, robotic rehabilitation, Spinal
Cord Independence Measure (SCIM), spinal cord injury, upper
extremity.
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I. INTRODUCTION

EHABILITATION following most neurological injuries
consists largely of activity-dependent and goal directed
training, where patients repeatedly move their limbs to produce
functional patterns [1]. In many cases, the patient may be inca-
pable of completing these movements unassisted, particularly
in the early stages of recovery after injury. Therapists, there-
fore, help to support and move the limbs during these exercises,
and continuously adjust the amount of assistance to the needs of
the patient. In recent years, robotic rehabilitation devices have
been proposed as a means to complement therapists’ activities
by assisting with the repetitive mechanical task of moving the
patient’s limbs. This robotic assistance increases the number of
repetitions within a given time period and allows the therapists
to focus on other aspects of training or simultaneously treat
more than one individual at a time. When robotic devices are
combined with engaging virtual reality training exercises, they
also have the potential to increase the patient’s enjoyment and
compliance with rehabilitation. Examples of robotic rehabilita-
tion devices focusing on the upper limb include the MIT-Manus
[2], [3], the ARM guide [4], the MIME [5], the GENTLE/s [6],
the Bi-Manu-Track [7], the T-WREX [8], [9] (the prototype for
the device commercialized as the Armeo Spring by Hocoma,
AG, Switzerland), the ARMin [10], [11], and the ReJoyce [12].
An added benefit of robotic rehabilitation devices is that they
can collect kinematic information about the user’s movements
as they are performed. If these measures could be converted into
clinically meaningful information, they would have two bene-
fits. First, frequent quantitative evaluation of the user’s perfor-
mance would open the door to more accurate tracking of the
time course of recovery after SCI, which has application in the
design of clinical trials and in developing responsive rehabilita-
tion programs with data-driven session-to-session training ad-
justments. Second, automated and quantitative functional as-
sessments would reduce the subjectivity inherent in many of the
current rehabilitation trial outcome measures (functional assess-
ment tests) [13].
A number of studies have examined the correlations between
movement descriptors measured by robots (including smooth-
ness, accuracy, speed and force produced) and clinical measures
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used for stroke survivors, such as the Fugl-Meyer test [14]-[18],
the Motor Power Score [13], [16], the Motor Status Score [16],
[17], and the Action Research Arm Test [18]. A number of mod-
erate and statistically significant correlations have been identi-
fied [14], [16], [18]. The use of multiple regression analysis,
to obtain predictions of clinical scores using combinations of
robotic descriptors, has also been attempted in the past and has
yielded stronger correlations [13], [15], [17].

While the studies cited above have focused on clinical assess-
ments in populations of stroke survivors, the study presented
here used data from a robotic upper limb rehabilitation device
to predict clinical assessment scores in a population of individ-
uals with cervical spinal cord injury (SCI). We performed a ret-
rospective analysis of data collected in several centers using an
upper limb rehabilitation robotic device (Armeo Spring) in a
sample of in-patient subjects with traumatic cervical SCI. Our
hypothesis is that useful diagnostic information can be derived
from data recorded by the robot during therapeutic use, without
the need for additional dedicated assessment procedures. Given
that SCI typically involves a proximal-to-distal impairment gra-
dient that is dependent on the level of injury, relationships may
exist between clinical assessments of function and the joint-spe-
cific information obtained using a robotic exoskeleton.

II. METHODS

We performed a retrospective study of subjects undergoing
in-patient rehabilitation following acute cervical SCI and
having various degrees of tetraplegia. Our approach consisted
of the following three steps.

1) Identify robotic rehabilitation sessions that were per-
formed close in time (within two weeks) to a clinical
assessment.

2) Derive quantitative predictors from the kinematic informa-
tion collected by the robot during the rehabilitation ses-
sions.

3) Perform a multiple linear regression to identify combina-
tions of the predictor variables that correlate well with the
clinical scores.

The details of each of these steps are given in the sections

below.

A. Data Collection

When using the Armeo Spring, the user’s arm is placed in an
exoskeleton that helps to support the weight of the upper and
lower arm through a system of springs (Fig. 1). The device does
not include actuators, but in this paper we use to term “robotics”
to refer to a general class of rehabilitation technology, rather
than specifically to devices that can move on their own to ac-
complish a task. For the training sessions used in this study, the
amount of weight support was chosen according to the reha-
bilitation goals of individual subjects; in the majority of cases,
the support was chosen to approximately compensate for the
combined weight of the arm and exoskeleton, and provide a
neutral position (i.e., the arm was neither being pulled down
of pushed up). In the version of the Armeo Spring used in this
study (ver. 1), the exoskeleton includes six joints: joints 1 and 2
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Fig. 1. Picture of the Armeo Spring. The five joints responsible for the position
of the hand in space are identified (joint 6 is used for pronation/supination at the
wrist).

are used for horizontal motion of the arm, joint 3 for vertical mo-
tion at the shoulder, joint 4 for internal shoulder rotation, joint 5
for flexion at the elbow, and joint 6 for pronation/supination at
the wrist. Sensors detect the angle at each of these 6 joints, and
a seventh sensor is used to measure hand grip pressure. The in-
formation collected from these sensors is transmitted to a com-
puter, and used to control the cursor on a display during a va-
riety of virtual reality (VR) tasks (e.g., putting fruit in a shop-
ping cart, wiping a window, or catching moving targets on the
screen). The Armeo Spring can be adapted to the capabilities
of an individual patient by adjusting the amount of anti-gravity
arm support, the range-of-motion required to use the device, and
the selection of VR tasks. While the exercises are conducted, the
device includes the option to record the angle of each joint of
the exoskeleton, the position of the hand in space (%, y, and z
coordinates) and the grip pressure with a sampling rate of 100
Hz. 1t is, therefore, possible to investigate the path and timing
of hand movements and the contributions of different joints, as
well as grip function. The length of each VR task is adjustable,
but typically falls in the range of 1-5 min.

Three clinical assessments commonly used internationally
for the evaluation of upper limb impairment were considered:
the Graded and Redefined Assessment of Strength, Sensibility
and Prehension (GRASSP [19]), the Action Research Arm Test
(ARAT [20]), and the Spinal Cord Independence Measure 111
(SCIM IIT [21]). The GRASSP is designed specifically to eval-
uate hand function in subjects with tetraplegia, and consists of
four components: 1) manual muscle testing (MMT) of 10 mus-
cles in the upper limb and hand; 2) sensibility testing at the
palmar and dorsal fingertips using monofilaments; 3) qualita-
tive prehension testing, which evaluates the ability of the sub-
ject to form different types of hand grips; 4) quantitative pre-
hension testing, which evaluates the ability of the subject to
perform various functional tasks (e.g., pegboard, pouring water,
turning a key, etc.). The ARAT is also a measure of the subject’s
ability to perform various functional tasks associated with activ-
ities of daily living (ADLs), and includes categories for grasp,
grip, pinch, and gross movement. Lastly, the SCIM is designed
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to evaluate the degree of independence with which the subject
can perform various ADLs (including self-care, mobility, and
bowel and bladder care). The “self-care” sub-score of the SCIM
has been shown to be most closely related to upper limb func-
tion [22], and we therefore examined both the total SCIM score
and the self-care sub-score alone. GRASSP and ARAT are per-
formed for each limb individually, so the assessments used in the
analysis were those corresponding to the limb receiving robotic
rehabilitation. The SCIM assessment provides a measure of in-
dependence and is not specific to one limb.

Data was collected from in-patients with traumatic cervical
SCI using the Armeo Spring at three SCI rehabilitation centers.
Two of the centers were located in Canada and were using
the Armeo Spring in the context of a pilot study studying the
device’s applicability to SCI [23], whereas the third center was
located in Switzerland and was using the Armeo Spring as part
of its standard of care. At each center, the date of each training
session was compared to the dates at which each of the three
types of clinical assessments (GRASSP, ARAT, SCIM) was
conducted. Sessions that were within two weeks of a clinical
assessment were retained.

Our goal was to predict the clinical scores using the kinematic
and grip data automatically collected from the robot during reg-
ular therapeutic use, rather than by using VR modules dedicated
specifically to assessment (e.g., with targets at specific repeat-
able positions). The training programs were, however, tailored
to the capabilities of each subject, such that each study partic-
ipant used different VR tasks based on their level of function.
The data used in our prediction models must, therefore, be gen-
eral enough to be obtainable from different VR tasks. Taking
this requirement into consideration, as well as the nature of the
VR tasks available in the Armeo Spring, predictor data was ex-
tracted from VR tasks that 1) required the subject to move the
cursor in two dimensions within the vertical plane and 2) en-
sured that the movements covered a large portion of this plane.
These choices were based on the fact that several of the avail-
able tasks met these criteria, and nearly all subjects had at least
one of these tasks included in their rehabilitation program. In
addition, we sought to incorporate data about grip capabilities
into the predictive models. For subjects with sufficient function
to use the Armeo Spring’s hand grip sensor, data was extracted
from VR tasks requiring the subjects to grasp and release virtual
objects at specific times and in specific locations. Again, several
of the available tasks met this criterion. Subjects who had insuf-
ficient hand function to produce a detectable grip on the hand
grip sensor were assigned a score of 0 in all of the grip-related
predictive variables (see below).

Three executions of a given VR task were associated with
each clinical score, and each predictive variable was averaged
over these three executions. One execution is defined as the
subject playing through the entire VR task once, which typi-
cally corresponds to 1-5 min of data. The three executions most
often corresponded to three consecutive training sessions, but
depending on data availability, two executions were on occa-
sion taken from a single training session where the task was per-
formed several times. Thus, for each clinical score, up to three

robotic training sessions were used, which were the ones closest
in time to the date of the manual assessment and were all re-
quired to have taken place within two weeks of the assessment
(either before or after).

As a result of these criteria, the number of available data
points was 20 for the GRASSP and SCIM assessments (of
which 11 had nonzero grip variables), and 18 for the ARAT
(of which 11 had nonzero grip variables). The lower number
of data points for the ARAT is due to the fact that only the
two centers conducting the pilot study were performing this
assessment. These data points were obtained from a total of 14
subjects for the GRASSP and SCIM, and 12 subjects for the
ARAT. Some subjects provided more than one data point from
the regression analysis, for example one baseline assessment
and one discharge assessment, while in other cases only one
clinical assessment was available or was sufficiently close (i.e.,
within two weeks) in time to three VR task executions to be
included. The three executions used to obtain each data point
were taken from sessions spanning an average of 4.3 + 2.8
days.

The subjects had motor levels ranging from C4 to C6 on
the side using the robotic device, and ASIA Impairment Scale
(AIS) grades ranging from A to D (as defined by the Interna-
tional Standards for the Neurological Classification of Spinal
Cord Injury (ISNCSCI), and evaluated by the clinical staff). The
inclusion criterion for analysis in this study was to have sus-
tained a traumatic cervical SCI with a motor level between C4
and C8. Subjects with a history of neuromuscular disease, upper
limb spasticity too severe to effectively use the device, severe
shoulder pain, unable to sit upright for 30 min, or unable to un-
derstand and follow instructions were excluded from the Armeo
Spring training. The time since injury for the assessments in-
cluded in the regression varied from 21 to 227 days. 92.8% of
the 14 subjects were male, and the average age was 43.6 + 18.4
years.

B. Predictive Variables

A total of 14 movement descriptors were investigated: 12
descriptors extracted from the movement of the arm, and two
descriptors extracted from the grip sensor information. Of the
12 descriptors related to the movement of the arm, eight were
concerned with range-of-motion, four with smoothness, and all
were derived from the unfiltered joint angles and hand position
data recorded by the machine. When computing the movement
descriptors from the Armeo Spring’s kinematic and grip data,
the first and last seconds of the VR task were ignored, because
subjects were usually moving to or from their resting position
during those periods. The descriptors used were as follows.

Range-of-Motion Descriptors:

1-3) The range-of-motion in centimetres of the hand po-
sition in the X, y, and z directions. The range-of-motion is
defined here as the difference between the maximum and
minimum position recorded for a given coordinate over the
course of the VR task.
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4-8) The range-of-motion in degrees for each of the five
joints governing the position of the hand in space (joints
1-5 in Fig. 1; the pronation/supination joint is not used
here). The range-of-motion is defined here as the difference
between the maximum and minimum angles recorded for
a given joint over the course of the VR task.

Smoothness Descriptors:

9) The number of directional changes in the hand’s tra-
jectory, normalized by the length of the task. A directional
change is defined as a reversal in the sign of the first deriva-
tive of any of the three coordinates of the hand position. A
smooth movement would have fewer directional changes
than a jittery uneven movement.

10) The mean velocity of movement over the duration
of the task. The VR tasks were based primarily on accu-
racy rather than speed, and subjects moved at their nat-
ural speed. Although not a true measure of smoothness,
velocity is nonetheless indicative of ease of movement.

11) The ratio of the mean velocity to the maximum ve-
locity recorded over the duration of the task [17].

12) The mean jerk (third derivative of the hand position)
of the movement over the duration of the task [14], [16].

Grip Descriptors:

13) The range of the grip pressure, defined as the max-
imum minus minimum pressure observed over the course
of the VR task. Note that the grip sensor of the Armeo
Spring returns measurements in volts and is not calibrated
to provide units of pressure; it can therefore be thought of
here as a dimensionless quantity.

14) The skewness (third standardized moment) of the
grip pressure, a measure of the asymmetry of the distribu-
tion, used here to detect imbalances between the subject’s
ability to grip and to release the sensor.

C. Construction and Evaluation of Predictive Models

Predictive models were sought for seven clinical outcomes:
GRASSP (Strength), GRASSP (Sensibility), GRASSP (Quali-
tative Prehension), GRASSP (Quantitative Prehension), ARAT,
SCIM (Total) and SCIM (Self-care). In each case, a multiple
linear regression was performed.

Because the number of predictors being considered (14) is
large compared to the number of available data points (18-20),
using all predictors would result in overfitting of the model. We
therefore limited the number of variables in a predictive model
to 4, or approximately 20% of the number of data points. Four
variables was chosen as an upper limit due to sample size con-
siderations, yet was high enough to produce regression models
with good performance: an exploratory analysis found that 4
out of 7 of our clinical outcomes (GRASSP Strength, GRASSP
Qualitative Prehension, GRASSP Quantitative Prehension and
ARAT) were best modeled by combinations of four variables,
even when no limit was placed on the number of independent
variables (results not shown). In order to select the best pre-
dictive variables, a leave-one-out cross-validation approach was

used. In other words, each data point in turn was left out, a model
was fitted to the remaining data, and the error between the pre-
dicted value of the unused data point and the correct value was
computed. In this way, a vector of error values with one entry
per data point was obtained for each combination of 1, 2, 3, or
4 of the 14 variables. The combination that minimized the Eu-
clidian norm of this error vector was selected, using an exhaus-
tive search of all possible combinations.

Next, a regression model was computed for each outcome
using the 4 (or less) variables selected in the cross-validation
process, and all available data points. The quality of the predic-
tion was evaluated using the following metrics.

+ The adjusted R? value. This quantity is a modification to
the coefficient of determination R?, and decreases as the
ratio between the number of predictors and the number of
data points increases. Adjusted R2, a more conservative
measure than R?, is used here to ensure that the results
are not skewed by the relatively large number of predictors
compared to the number of available data points.

* The mean absolute value of the prediction error, using the
model based on all available data points.

* The mean absolute value of the prediction errors obtained
during the cross-validation process. This value does not
correspond exactly to the model obtained using all data
points, but provides a more rigorous estimate of the error
magnitude that might be expected on previously unseen
data using the selected variables.

Note that a small difference between the prediction errors
obtained using all data points and those obtained during the
cross-validation process suggests that the model will be able
to generalize to new data and therefore have prognostic utility.
Conversely, a large discrepancy between the two quantities sug-
gests that the model using all data points has overfitted the data.

Lastly, we sought to estimate the importance of each category
of predictive variable (Range-of-Motion, Smoothness, or Grip).
For each clinical outcome, each category of variable in turn was
removed from the list of predictors, and a new predictive model
was computed using the same methodology as before.

III. RESULTS

Fig. 2 shows the true and estimated values of the clinical
scores for each of the four components of the GRASSP test,
Fig. 3 shows the prediction results for the ARAT, and Fig. 4
shows the prediction results for the SCIM. Table I provides
the movement descriptors used for the predictions and the
corresponding coefficients. The adjusted R? value was 0.66 for
GRASSP (Strength), 0.54 for GRASSP (Sensibility), 0.73 for
GRASSP (Qualitative Prehension), 0.78 for GRASSP (Quan-
titative Prehension), 0.73 for the ARAT, 0.77 for the SCIM
(Total), and 0.72 for the SCIM (Self-care). All of these values
have square roots (R-values) greater than 0.7, a common rule
of thumb for denoting strong correlations [24]. In all cases,
the predicted and true values showed statistically significant
correlations with p < 0.01.

Table II provides the prediction errors, both for the models de-
rived from all data points and for the cross-validation process.
The results are also expressed as a percentage of the maximum
possible score for each clinical assessment. Using this scale,
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Fig. 2. True clinical scores (blue solid line) and estimates from the regression model (red dashed line), for each of the four components of the GRASSP assessment.
Each point on the x-axis represents one clinical assessment, and the y-axis provides the corresponding scores.
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Fig. 3. True clinical ARAT scores (blue solid line) and estimates from the re-
gression model (red dashed line). Each point on the x-axis represents one clinical
assessment, and the y-axis provides the corresponding scores.

the mean prediction error of the regression model built using
all data points was 10.4% for GRASSP (Strength), 14.8% for
GRASSP (Sensibility), 12.2% for GRASSP (Qualitative Pre-
hension), 11.8% for GRASSP (Quantitative Prehension), 11.8%
for ARAT, 8.3% for SCIM (Total), and 14.5% for SCIM (Self-
care).

Table I1I shows the adjusted R? values when each category of
variables (Range-of-Motion, Smoothness, or Grip) is removed
in turn. Note that in some cases the adjusted R2 value with some
of the predictors removed may be higher than the value when
all predictors are included. This is because the selection of the

predictors during the cross-validation process is based on min-
imizing the norm of the prediction error vector, not on maxi-
mizing the correlation. Removing the range-of-motion variables
decreased the adjusted R? by 30.9 4 20.7% over the seven clin-
ical outcomes considered, removing the smoothness variables
resulted in a decrease of 6.8 + 15.3%, and removing the grip
variables resulted in a decrease of 35.0 + 23.1%. Removing
smoothness was the least harmful to performance for all clinical
outcomes except GRASSP (Sensibility), for which range-of-
motion was the least useful category of predictor.

IV. DIScUSSION

We investigated the prediction of clinical assessment scores
using the data collected by an upper limb robotic rehabilitation
device in an SCI population. The regression models obtained
had adjusted R? values greater than 0.7 for all functional mea-
sures: ARAT, SCIM (Total and Self-care), GRASSP (Qualita-
tive Prehension), and GRASSP (Quantitative Prehension), the
latter corresponding to the highest adjusted R? value found,
0.78. Somewhat lower prediction quality was found for the mea-
sure of strength [0.66 for GRASSP (Strength)], and the lowest
value found was for the measure of sensation [0.53 for GRASSP
(Sensibility)]. The finding that prediction quality was lowest
for GRASSP (Sensibility) is in accordance with expectations,
because the prediction is based on motor function characteris-
tics. Unlike measures of motor function, GRASSP (Sensibility)
scores do not directly depend on ROM, grip ability or movement
smoothness, resulting in a weaker relationship in the regression
model. Overall, our results are in line with the R? values pre-
viously reported in similar studies involving stroke survivors
[13], [15], [17]. Our regression models proved general enough
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TABLE 1
REGRESSION MODEL FOR EACH CLINICAL OUTCOME: OUTCOME = PREDICTORI * COEFF1 + PREDICTOR2 * COEFF2 + PRED3 * COEFF3 + PREDICTOR4
*« COEFF4 4+ CONSTANT

Outcome Predictor 1 Predictor 2 Predictor 3 Predictor 4 Constant
Coefficient 1 Coefficient 2 Coefficient 3 Coefficient 4
GRASSP Y range Joint 1 range Joint 4 range Grip Skewness 15.48
(Strength) 0.67 0.08 -0.34 6.83
GRASSP (Sensibility) Directional Mean velocity/max Jerk Grip Skewness -19.98
changes velocity -0.003 6.15
143.06 90.90
GRASSP (Qualitative X range Joint 4 range Directional changes Grip Skewness 13.74
Prehension) 0.12 -0.15 -63.01 2.90
GRASSP Joint 3 range Joint 4 range Mean velocity/max velocity Grip Skewness -16.37
(Quantitative 0.31 -0.21 102.35 11.51
Prehension)
ARAT Z range Joint 3 range Mean velocity/max velocity Grip Skewness -17.83
-0.95 0.68 162.51 23.76
SCIM (Total) X range Z range Grip range Grip Skewness 19.27
1.63 -3.10 254.81 22.95
SCIM (Self-care) X range Z range Grip range Grip Skewness 5.04
0.37 -0.82 78.24 4.96

to accommodate wide variations in the functional abilities of the
study subjects, which are reflected in the range of functional test
scores in Figs. 2—4.

The high level of performance was achieved despite the fact
that the movement descriptors used in the regressions do not
always correspond to what the clinical assessments are explic-
itly evaluating. For instance, many components of the test in-
volve specific functional tasks that primarily require dextrous
hand movements. Nonetheless, the robotic device evaluated a
combination of arm (through ROM and trajectory tracking) and
hand function (through the grip sensor), and these two compo-
nents proved sufficiently representative of the underlying level
of function to provide useful clinical predictions. In this respect,
it is not surprising that the models obtained involved both ROM
measures and grip measures (Table I), for all outcomes except
GRASSP (Sensibility).

Our regression models were built using data collected during
the course of therapeutic use of the Armeo Spring, without the
need for any VR modules specifically dedicated to assessment.
In addition, the predictive variables were not specific to a
particular VR task (as opposed to, for example, measuring
the time and trajectory smoothness between targets at known
locations). As a result, the regression models can be applied
to data from virtually any patient using the Armeo Spring,
without any modifications needed to the subject’s rehabilitation
program. Although more standardized robotic assessment
methods might have yielder even more predictive regression
models, our demonstration that robotic rehabilitation sessions
can provide useful diagnostic information without the need
for additional time or personnel resources is highly relevant
given the overburdened state of current clinical environments
in many countries.
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TABLE II
PREDICTION ERROR DURING THE CROSS-VALIDATION PROCESS, AND USING THE SELECTED REGRESSION MODEL WITH ALL DATA POINTS. RESULTS
ARE ALSO SHOWN AS A PERCENTAGE OF THE MAXIMUM POSSIBLE SCORE FOR EACH ASSESSMENT. THE MAXIMUM POSSIBLE SCORES ARE AS FOLLOWS.
GRASSP (STRENGTH): 50; GRASSP (SENSIBILITY): 24; GRASSP (QUALITATIVE PREHENSION): 12; GRASSP (QUANTITATIVE PREHENSION): 30; ARAT: 57;
SCIM (ToTAL): 100; SCIM (SELF-CARE): 20

Outcome Mean Absolute As % of Maximum Mean Absolute As % of Maximum
Prediction Error (Cross- Possible Score Prediction Error (All Possible Score
Validation) Data)

GRASSP (Strength) 6.9 13.8% 5.2 10.4%
GRASSP (Sensibility) 4.6 19.3% 3.6 14.8%
GRASSP (Qualitative 1.9 15.9% 1.5 12.2%

Prehension)
GRASSP (Quantitative 4.7 15.6% 35 11.8%
Prehension)
ARAT 8.9 15.6% 6.7 11.8%
SCIM (Total) 11.8 11.8% 8.3 8.3%
SCIM (Self-care) 4.2 20.8% 2.9 14.5%
TABLE III

ADJUSTED R? VALUES OF THE REGRESSION MODELS FOR EACH OUTCOME. THE FIRST COLUMN SHOWS THE RESULTS WHEN ALL PREDICTIVE VARIABLES ARE
AVAILABLE. SECOND, THIRD, AND FOURTH COLUMNS SHOW THE RESULTS WHEN RANGE-OF-MOTION-, SMOOTHNESS- AND GRIP-RELATED VARIABLES ARE
EXCLUDED, RESPECTIVELY. VALUES IN PARENTHESES SHOW THE PERCENT CHANGE WHEN COMPARING WITH THE VALUES IN THE FIRST COLUMN

Outcome All Predictors No ROM Predictors No Smoothness Predictors No Grip Predictors
GRASSP 0.66 0.52 (-21.8%) 0.66 (-0%) 0.59 (-11.1%)
(Strength)
GRASSP (Sensibility) 0.54 0.54 (-0%) 0.35 (-34.3%) 0.31 (-42.0%)
GRASSP (Qualitative 0.73 0.61 (-17.4%) 0.74 (+1.0%) 0.65 (-10.8%)
Prehension)
GRASSP (Quantitative 0.78 0.48 (-38.1%) 0.61 (-21.9%) 0.48 (-38.3%)
Prehension)
ARAT 0.73 0.53 (-27.1%) 0.79 (7.8%) 0.61 (-16.1%)
SCIM (Total) 0.77 0.37 (-51.9%) 0.77 (-0%) 0.31(-59.7%)
SCIM (Self-care) 0.72 0.29 (-59.7%) 0.72 (-0%) 0.24 (-66.7%)

The adjusted R2 values (Figs. 2—4) and prediction errors
(Table II) found for the ARAT, SCIM, and GRASSP Prehen-
sion measures show that the regression models are sufficient to
provide meaningful information, though not to replace manual
clinical assessments altogether. Assessments meant to evaluate
the effects of an intervention (e.g., baseline and discharge) in
clinical trial are critical factors in guiding best practices and the
adoption of new technology, and in that context it is crucial that
any error be minimized. Before robotic assessments can be used
for this purpose, the correlations between clinical and robotic
data must be further increased. To do so, further studies like
the one presented here must be conducted, in which a variety
of predictive variables (which will depend on the capabilities
of different robots) are studied with sufficiently large sample
sizes to obtain highly accurate device- and population-specific
regression models. On the other hand, with the current level
of performance, quantitative data from robotic devices could
potentially be used for interim assessments (assuming that
GRASSP, ARAT, or SCIM were judged to be appropriate out-
comes for the study). A crucial benefit of using robotic data for
assessment is to enable a more detailed characterization of the
time course of recovery after SCI, both spontaneously and as a
result of rehabilitation interventions. Precise temporal profiles
of recovery would typically be prohibitively time-consuming to
collect using manual assessments, but are needed in the design
of clinical trials [25], and might also be useful for guiding
session-by-session training adjustements and thus improving
the effectiveness of the rehabilitation process.

Although the coefficients in Table I are specific to the Armeo
Spring, generalization of our methods and qualitative results to
other devices will depend on the design of the machines and
their measurement capabilities. The variables derived from the
position of the hand in space can be generalized easily to any
other device allowing and measuring 3-D movement. Likewise,
the grip variables can be generalized to any device with a grip
sensor, though the exact coefficients would change depending
on the calibration of the sensor. The variables hardest to gener-
alize are those derived from the joint angles of the exoskeleton,
but we expect that alternative regression models with similar
performance could be developed for other devices that can pro-
vide joint-specific angle information (e.g., other exoskeletons).
Improved and more generalizable regression models might also
be obtained by incorporating variables that describe the settings
of the robotic device (e.g., amount of weight support, difficulty
settings). This was not explored in the current study, partly due
to the limited information provided by the Armeo Spring. For
instance, the amount of weight support is described by a coarse
unitless scale, rather than standard units of weight.

The number of available data points is the main limitation
of our study, but the use of the adjusted R? value and of a
cross-validation process demonstrate that our conclusions hold
true despite the small sample size. The prediction errors ob-
tained during cross-validation were found to be in the range
of 2%—5% higher (as a percentage of the maximum possible
score) than the prediction errors obtained using the final regres-
sion models with all data points (Table II). These differences are
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small enough to provide confidence in the qualitative accuracy
of our results; however, they also suggest that the regression
model coefficients could be further refined if a larger data set
were available.

The regression models shown in Table I employ a combina-
tion of range-of-motion, smoothness, and grip variables. When
examining the performance degradation that would result from
eliminating each of these categories in turn, movement smooth-
ness was found to generally be the least crucial for predicting
functional abilities (Table III). This observation may be partly
due to the fact that smoothness has little impact on the scores
of the GRASSP, ARAT, or SCIM, whereas active range-of-mo-
tion and grip ability will directly impact the ability to complete
various components of these tests successfully. Nonetheless,
our results create an interesting contrast with similar studies
performed on populations of stroke survivors. In that context,
movement smoothness is often cited as an important predictor of
function [14], [15], [17], [18]. It is therefore important to frame
any relationship between robot-derived data and clinical scores
within the context of a specific injury. Which predictive vari-
ables are found to be most useful should be reflective of the
nature of the injury. After mild or moderate stroke, the dam-
aged regions of the brain often result in poor control of move-
ments, which can be reflected in hand trajectory smoothness. In
contrast, after SCI, the impairment is due to more fundamental
poverty of movement (i.e., muscle paresis or paralysis), and may
therefore be better predicted by measures of range-of-motion
and/or muscle strength (e.g., grip). This argument is supported
by a previous study by Wirth et al., which demonstrated that in
the ankle joint impairment after stroke involves reductions in
both dexterity and muscle strength, whereas impairment in SCI
involves reductions primarily in muscle strength, not dexterity
[26]. Further studies using the automated and quantitative data
collection of robotic rehabilitation devices may therefore result
in improved understanding of the underlying recovery processes
in each type of injury, as well as inform and more accurately
guide rehabilitation strategies.
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