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Abstract

Objective: To demonstrate naturalistic motor control speed, coordinated grasp, and carryover from trained to novel objects by an individual with

tetraplegia using a brain-computer interface (BCI)-controlled neuroprosthetic.

Design: Phase I trial for an intracortical BCI integrated with forearm functional electrical stimulation (FES). Data reported span postimplant days

137 to 1478.

Setting: Tertiary care outpatient rehabilitation center.

Participant: A 27-year-old man with C5 class A (on the American Spinal Injury Association Impairment Scale) traumatic spinal cord injury

Interventions: After array implantation in his left (dominant) motor cortex, the participant trained with BCI-FES to control dynamic, coordi-

nated forearm, wrist, and hand movements.

Main Outcome Measures: Performance on standardized tests of arm motor ability (Graded Redefined Assessment of Strength, Sensibility, and

Prehension [GRASSP], Action Research Arm Test [ARAT], Grasp and Release Test [GRT], Box and Block Test), grip myometry, and functional

activity measures (Capabilities of Upper Extremity Test [CUE-T], Quadriplegia Index of Function-Short Form [QIF-SF], Spinal Cord Inde-

pendence MeasureeSelf-Report [SCIM-SR]) with and without the BCI-FES.

Results: With BCI-FES, scores improved from baseline on the following: Grip force (2.9 kg); ARAT cup, cylinders, ball, bar, and blocks; GRT can,

fork, peg, weight, and tape; GRASSP strength and prehension (unscrewing lids, pouring from a bottle, transferring pegs); and CUE-Twrist and hand

skills. QIF-SF and SCIM-SR eating, grooming, and toileting activitieswere expected to improvewith homeuse of BCI-FES. Pincer grips andmobility

were unaffected. BCI-FES grip skills enabled the participant to play an adapted “Battleship” game and manipulate household objects.

Conclusions: Using BCI-FES, the participant performed skillful and coordinated grasps and made clinically significant gains in tests of upper

limb function. Practice generalized from training objects to household items and leisure activities. Motor ability improved for palmar, lateral, and
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tip-to-tip grips. The expects eventual home use to confer greater independence for activities of daily living, consistent with observed neurologic

level gains from C5-6 to C7-T1. This marks a critical translational step toward clinical viability for BCI neuroprosthetics.
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ª 2019 by the American Congress of Rehabilitation Medicine. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Individuals with tetraplegia prioritize recovery of upper limb
strength and dexterity to facilitate their independence.1-5 Volun-
tary control of hand grasp has been restored to paralyzed limbs
using noninvasive6-11 and cortical microelectrode array (MEA)-
based12-16 brain-computer interfaces (BCIs) that translate brain
activity to hand movements evoked through implanted10-12 or
transcutaneous6-9,13-16 functional electrical stimulation
(FES).6-9,12,13 However, clinically significant gains on tests of
upper limb function have not been demonstrated using BCI-FES.
The critical translational path for BCI neuroprosthetics requires
demonstration of clinically meaningful gains in speed, dexterity,
and smooth integration of grip with other arm movements to
perform complex tasks.

Our goal was to evaluate whether an individual with tetraplegia
could make clinically significant gains in skillful grasp coordi-
nation17,18 using an investigational MEA-BCI-FES. We formu-
lated a framework19 called Generalizability, Ability,
Independence, Neurologic Level (GAIN) that reflects design goals
for BCI neuroprosthetics to assist in this assessment. GAIN was
inspired by end-user perspectives,4,20,21 challenges to trans-
lation,22,23 and clinical evaluations developed for surgical
interventions for tetraplegia.24 We anticipate it being useful for
comparing performance across neuroprosthetic technologies and
justifying (eg, to regulatory or payer sources) that a device
measurably improves function on the International Classification
of Functioning, Disability, and Health domains recognized by the
World Health Organization.25

Devices meeting the GAIN standard include the following:
(1) demonstrate generalizability, defined as performing well
without retraining for objects with similar grip features (e.g.,
lateral, tip-to-tip, palmar, pincer grasps); (2) confer clinically
significant gains in motor ability on standardized, psychometri-
cally validated, and expert-endorsed24,26-33 tests of upper limb
function; (3) affect daily life by facilitating functional indepen-
dence for activities of daily living (ADLs) on psychometrically
List of abbreviations:

ARAT Action Research Arm Test

BBT Box and Block Test

BCI brain-computer interface

CUE-T Capabilities of Upper Extremity Test

FES functional electrical stimulation

GAIN Generalizability, Ability, Independence,

Neurologic Level

GRASSP Graded Redefined Assessment of Strength,

Sensibility, and Prehension

GRT Grasp and Release Test

MEA microelectrode array

MMT manual muscle training

QIF-SF Quadriplegia Index of Function-Short Form

SCI spinal cord injury

SCIM-SR Spinal Cord Independence MeasureeSelf-

Report

SRD smallest real difference
validated assessments24,26-33; and (4) improve the user’s neuro-
logic level of function on validated measures normed to the In-
ternational Standards for the Neurological Classification of Spinal
Cord Injury standards.34
Methods

This was a Phase I trial of a MEA-BCI interfaced with the Neu-
rolifea transcutaneous, forearm FES. Like similar intracortical BCI
studies,12-18,35,36 this report was limited to 1 participant, the first to
use the system, due to the invasive nature of the investigational
brain implant and time required for training and assessment.
Technical BCI-FES features13,37 (fig 1), the Utah Arrayb MEA
implantation procedures, and machine learning algorithms used to
generate decoders were described previously. The participant
provided written informed consent as approved by our local
institutional review board.

Participant

The participant was a 27-year-old man with chronic, traumatic, C5
American Spinal Injury Association Impairment Scale A tetra-
plegia. He had 5 out of 5 strength for shoulder and elbow flexion;
1 out of 5 wrist extension; and flaccid paralysis with lack of
sensation below C6.

Procedures

The participant began practicing BCI-FES-evoked movements of
his right forearm and hand 1 month postimplant (3.5h/session, 2 to
3 sessions/wk) and started standardized testing 3 months later
(fig 2). Only portions of standardized tests were given in any
session due to time constraints, with the full battery of tests
extending over months. Data reported here were collected between
postimplant days 137 through 1478, with simpler standardized test
items (eg, manual muscle training [MMT]) occurring earlier than
more complex tasks (eg, pouring).

FES Calibration

Anode-cathode calibrations were developed for each object and
grasp using knowledge of forearm anatomy. Initial calibrations
took 30 to 60 minutes, while recalibration in subsequent sessions
typically took 2 to 3 minutes to verify consistent electrode
placement and adjust stimulation intensity. Figure 3 depicts
representative stimulation patterns, target muscle groups, and
FES-evoked movements.

Decoder training

For standardized testing, each decoder was trained with the
number of grip classes needed to complete 1 subtest item (1 to 2
movements plus rest). We chose this for simplicity, minimizing
www.archives-pmr.org
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Fig 1 Cortical implant and NeuroLife BCI-FES system. (At left) A. 96-channel Utah MEA. B. Close-up view of array orientation (yellow) on the

left motor cortex. C. Head computerized tomography image showing the implant location. D. Rendering of the location of the array (yellow) on

the precentral gyrus. (At right) BCI-FES Operation: (1) Neurons fire when the user thinks about grasping. (2) Neural data is sampled at

30,000Hz with a Neuroport systemb, converted into 100-ms blocks of MWP, and analyzed with nonlinear, SVM-movement decoders trained in

MATLAB. Each decoder is trained iteratively over 5 blocks (3 to 4 trials/block) using MWP in multiunit activity frequency bands as described

previously.13,37 (3) Continuous decoder outputs, updated every 100 ms, animate a computer-generated hand and (4) Stimulate transcutaneous,

forearm, cathode and anode electrode sites calibrated to finger and wrist flexors and extensors. (5) FES-evoked movements allow the user to

manipulate objects. NOTE. Figures and photographs by M. Bockbrader and N. Austin. Abbreviations: MWP, mean wavelength power; SVM,

support vector machine.
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training time, and facilitating subtest comparison across days. In
some cases, 1 grasp type or decoder was used to test several
similarly shaped objects (eg, day 833: Grasp and Release Test
(GRT) fork decoder was used to “eat” polystyrene foam “food”
with a metal dinner fork and to transfer Action Research Arm Test
[ARAT] cylinders). Multiple, sequentially-trained decoders were
often built on the same day to allow testing for multiple items per
session. To demonstrate that performance obtained during stan-
dardized testing was reproducible with multiclass decoders, we
compared single-class GRT performance to previously published
results41 for a decoder with classes for all GRT objects or grips.

Decoder training took 10 to 15 minutes, with 3 to 4 repetitions
of each movement across 4 to 6 blocks. Decoders appeared to be
sensitive to grasp context42; thus, they were trained with objects
and any voluntary shoulder or elbow movements required for
performing the task. Figures 3 and 4 describe representative
examples of decoder activation (line graphs) and evoked move-
ments (pictures) for items from each outcome measure.
www.archives-pmr.org
Standardized testing

Measures of motor ability (see fig 2), functional independence,
and neurologic level of function24,26-33 were obtained with and
without BCI-FES. Functional independence without BCI-FES was
rated as the participant’s home level of function. Functional
independence with BCI-FES was his expected level of function if
he was able to use BCI-FES at home. Generalization of upper limb
motor ability was evaluated by training decoders with standard-
ized test objects and testing with household objects.
Instruments

Graded and Redefined Assessment of Sensibility, Strength, and
Prehension (GRASSP34,43-45)
Dorsal and palmar sensation on digits I, III, and V were scored
from 0 (unable) to 4 (0.4 kg) using Semmes-Weinstein

http://www.archives-pmr.org
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Fig 2 Standardized tests. A. Upper limb motor ability measures. I. GRASSP34 objects II. Black mechanical pinch gauge (0 kg to 13.6 kg) III.

Electronic handgrip digital dynamometer (0 kg to 90 kg) IV. ARAT38 objects V. GRT39 objects VI. BBT40 box with blocks B. Examples of grip types in

each upper limb motor ability measure. The GRASSP and ARAT assess the ability to form palmar and precision grips independently from other upper

limb movements. The GRASSP, ARAT, GRT, and BBT assess integration of palmar or precision grasps with upper limb movements required to

transfer objects (shoulder internal and external rotation) or transfer and lift objects (shoulder internal and external rotation and flexion and

extension). The GRASSP and ARAT also assess integration of palmar or precision grasps with forearm pronation and supination (as in pouring or

turning a doorknob) or radial and ulnar deviation (as in twisting a lid). NOTE. Figures and photographs by M. Bockbrader and N. Austin.
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30-second trial of GRT can manipulation. The spike raster plots

threshold-crossing events (per 100 ms) across channels. The heatmap
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closed” decoder peaks are shown in 30 seconds, corresponding to 5

successful transfers. The inset depicts electrode stimulation patterns,

target muscle groups, and FES-evoked movements during “hand open”

(left) and “hand closed” (right) states. Cathodes are shown in black and

anodes are shown in red. NOTE. See supplemental videos for a

demonstration of object manipulation with BCI-FES. Figures by M.

Bockbrader and N. Austin, photographs by M. Bockbrader and S. Cola-

chis. Abbreviations: APL, abductor pollicis longus; EDC, extensor dig-

itorum communis; FDS/P, flexor digitorum superficialis/profundus; FPL,

flexor pollicis longus; MWP, mean wavelength power.

BCI-FES for fine motor control of grasp 1205
Monofilamentc testing. Strength was graded from 0 (flaccid) to 5
(full) using MMT. Prehension ability was scored for lateral,
palmar, and tip-to-tip grips from 0 to 4 (unable; moves wrist;
moves wrist and fingers, no force; moves wrist and fingers, some
www.archives-pmr.org
force; moves wrist and fingers, full force). Prehension perfor-
mance included: pouring, unscrewing lids, turning keys, 9-Hole
Peg, inserting coins into slots, and fastening nuts onto bolts.
Scores were rated (0 to 5) reflecting best performance within 75
seconds (unable; object grasped, <50% complete; object grasped,
>50% complete; task completed, incorrect grip; task completed
slowly, correct grip; task completed normally).

Myometry46-48

Pinch force (tip-to-tip, lateral) and palmar grip were measured
with a Black Mechanical Pinch Gauged (range: 0 to 13.6 kg, ac-
curacy: �0.05 kg) and the Camry Electronic Digital Dynamo-
metere (range: 0 to 90 kg, accuracy: �0.1 kg).

Action Research Arm Test38,48-51

Objects included blocks (2.5 cm3, 5 cm3, 7.5 cm3, 10 cm3), balls
(6-mm, 16-mm, 7.1-cm diameter), bar (10 cm � 2.5 cm � 1 cm),
cup (7-cm diameter), cylinders (1-cm, 2.5-cm diameter), and 3.5-
cm ring. Scoring ranged from 0 to 3 based ability to grasp and
transfer objects (unable in 60 s, partially performed in 60 s, per-
formed >5 s, performed <5 s).

Grasp and Release Test39,52

Objects included peg (0.6 cm � 7.6 cm), weight (5 cm � 1.4 cm),
block (2.5 cm3), can (5.4 cm � 9.1 cm), video tape (20.4 cm � 12
cm � 3 cm), and fork (1.2 cm � 14.5 cm). Most objects were
grasped, transferred lateral-to-medially, and released. The fork
was grasped, depressed 2 cm against a 4.4-N spring, and released.
Item scores were median successes across 3, 30-second trials.

Box and Block Test (BBT)40,48

Scoring reflected the number of successful (2.5 cm3) block
transfers in a 2-compartment box over 3, 60-second trials.

Capabilities of Upper Extremity Test (CUE-T)53,54

Thirty-two activities in 4 domains (reaching and lifting, pushing
and pulling, wrist actions, hand and finger actions) were scored
from 0 to 4 (unable, severe difficulty, moderate difficulty, mild
difficulty, no difficulty) based on participant self-report and
physiatrist observation.

Quadriplegic Index of Function-Short Form (QIF-SF)55

Scores (0 to 4) reflected participant self-ratings (dependent,
physical assistance, supervision, independent with device, inde-
pendent without device) on 6 self-care tasks.

Spinal Cord Injury Independence Measure-Self-Report
(SCIM-SR)56

Scores reflected participant self-ratings on 17 activities in 3
domains (self-care, respiration and sphincter manage-
ment, mobility).
Analyses

Best performance with and without BCI-FES were reported.
Nonparametric statistics were used due to small sample size and
nonnormal distributions. Smallest real difference (SRD) and
minimum clinically important difference were used to interpret
scores (fig 5). Calculations were performed using MAT-
LABf software.

http://www.archives-pmr.org
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Fig 4 BCI-FES evoked grips in upper limb motor tasks. Representative examples of decoder activation (line graphs) and evoked movements

(pictures) are shown for single trials from each outcome measure. GRASSP Pour (A), GRASSP Jar (A), and ARAT Ball (B) required sustained decoder

activation to maintain grip during reaching, pronating, or twisting, respectively. Timed tests like the GRASSP 9-Hole Peg (A), GRT (C), and BBT

(D) required rapid initiation and termination of decoder activity to optimize performance. Tasks that required a series of movements are labeled

with stages of task completion (or failed attempts) along the decoder timeline to correlate decoder activity with behavioral performance. For

example, the GRASSP Jar (A) task consisted of a series of integrated hand, wrist, forearm, and shoulder movements to twist lids off of 2 jars. The

first jar’s lid was removed after 5 sequential pairs of hand-open and shoulder flexion (gray peaks) and hand-close and shoulder extension with

radial deviation (blue peaks). In the BBT (D) trial, the participant dropped a block coincident with a short duration peak in decoder activity (at

approximately 11 s). Drops could be explained as user control failures (ie, inability to sustain decoder activation above threshold as [D]) or due to

FES calibration difficulty (sustained, correct, suprathreshold decoders in GRASSP 9-hole peg [A]) associated with muscle fatigue or surface

electrode displacement. NOTE. See also supplemental videos for performance on these tasks. Figures by M. Bockbrader and N. Austin, photographs

by M. Bockbrader, S. Colachis, and M. Zhang.
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Results

The participant improved qualitatively over time in his ability to
use BCI-FES to evoke movements of his dominant arm and hand.
We observed hypertrophy of right forearm and hand muscles over
the first 2 months, resulting in a relative reversal of his SCI-related
atrophy, but no change in his International Standards for the
Neurological Classification of Spinal Cord Injury exam or elec-
tromyogram and nerve conduction study findings.13
Initially, the participant reported concentrating intensely “like
taking a calculus test” when imagining gross motor movements.
He experienced mental fatigue and found fine motor control and
individual finger movements onerous. After 8 to 12 months,
however, he began to require fewer training blocks and less
intense focus to master new movements. Figure 5A shows the
progression of testing, beginning with GRASSP and ARAT
(supplemental video S1), progressing to BBT and GRT
www.archives-pmr.org
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GRT objects (days 855, 857, 869, 897). When the participant used the multiclass decoder to perform the GRT, he appropriately switched between

BCI-FES for fine motor control of grasp 1207
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(supplemental video S2), then addressing ADLs and ability to
transfer skills to household objects (toothbrush, fork, book,
beverage can; supplemental video S3, available online only at
http://www.archives-pmr.org/) and leisure activities (adapted
“Battleship” supplemental video S4) (see fig 5E).

Graded Redefined Assessment of Strength,
Sensibility, and Prehension

GRASSP strength improved from 12 to 40 (24% to 80% normal),
achieving normal strength for 5 forearm muscle groups (see
fig 5B, table 1). Force increased on myometry for all grips
(table 2). However, maximal palmar, lateral, and tip-to-tip grip
force could not be accurately quantified. High compressive force
altered the participant’s ability to apply force directly to the pinch
gauge and dynamometer transducers. Prehension ability scores
were therefore based on ability to grip objects against resistance.
BCI-FES improved prehension ability scores from 5 to 11 (42% to
92% normal), with submaximal tip-to-tip grip noted from inade-
quate thenar muscle stimulation. Prehension performance
improved with BCI-FES from 9 to 15 (30% to 50% normal), due
to better ability to pour a bottle (supplemental video S5), unscrew
lids, and perform 9-Hole Peg. No gains were noted for key, coins,
or fastener items (no FES-evoked pinch grips could be calibrated
for these objects). Dorsal and palmar sensation did not change.

Action Research Arm Test

BCI-FES improved manual dexterity on total ARAT, grasp, and
grip scores (see fig 5C, table 3), increasing from 18 to 30 (32% to
53% normal), 8 to 15 (44% to 83% normal), and 4 to 9 (33% to
75% normal), respectively. Performance improved with BCI-FES
for the 7.1-cm ball, bar, both cylinders, cup (pouring) and 2.5-cm3,
5-cm3, and 7.5-cm3 blocks. No change was observed for gross
movement, pincer items, the 10-cm3 block, and ring.

Grasp and Release Test

BCI-FES improved median success rates for peg, weight, fork, can,
and tape, but not block (see fig 5D, table 4). This pattern of results
was also found when the GRT was performed using a multiclass
decoder that included grips for all GRT objects16 (see fig 5D).

Box and Block Test

Transfer rates did not improve with BCI-FES (9 blocks/min)
compared to baseline (12 blocks/min) (table 5, fig 5D, fig 6A,
supplemental video S4).

Capabilities of Upper Extremity Test

BCI-FES improved unilateral arm and hand function on the CUE-
T (table 6, fig 7C). Total score increased from 27 to 49 (45% to
82% normal) due to gains for wrist actions (from 4 to 8 points;
grip types to use the optimal grip for the object he was manipulating. The d

palmar grip), block (tripod grip), can (cylindrical palmar grip), weight (lat

Data represent mean GRT scores (each of which was calculated per test ins

obtained on more than 1 day have SD depicted as error bars. E. Generalizati

of horizontal and vertical peg grip skills enabled the participant to play

performance with and without the BCI-FES. Figures by M. Bockbrader and
50% to 100% normal) and hand actions (4 to 22 points; 17% to
92% normal). BCI-FES did not change reaching and lifting or
pushing and pulling scores.

Quadriplegia Index of Function-Short Form

BCI-FES raised the participant’s expected level of independence
for ADLs (see table 6, fig 7C) beyond his home function (QIF-
SFactualZ4, QIF-SFexpectedZ13). At baseline, the participant was
“dependent” for bed mobility, lower body dressing, opening jars,
and transferring from bed to chair; required (minimum to mod-
erate); “physical assistance” for grooming; and was “independent
with assistive device” to lock his powerchair. Using BCI-FES, he
expected to gain “independence with assistive device” for
grooming, feeding, and patient-lift transfers.

Spinal Cord Independence MeasureeSelf-Report

BCI-FES raised the participant’s expected level of independence
for self-care and toileting but not mobility (see table 6, fig 7C). At
baseline (SCIM-SRZ15), he had normal function for respiration;
moderate impairments (25% to 70% normal) for upper body
dressing, bowel management, grooming, and feeding; and severe
impairments (0% to 10% normal) for mobility and transfers, toi-
leting, bladder management, and lower body dressing. Using BCI-
FES (SCIM-SRZ24), he anticipated becoming independent from
others (100% normal) for feeding and grooming; increasing his
independence for bladder management, bowel management, toi-
leting, and bed mobility (30% to 60% normal).
Discussion

Our objective was to evaluate, using GAIN criteria, whether an
individual with tetraplegia could make clinically significant gains
in grasp coordination with an investigational MEA-BCI-FES
(fig 7). GAIN is a framework for evaluating clinical utility of a
device, based on measured recovery of motor function, improved
neurologic level, and independence for ADLs. Use of this metric
can facilitate reproducibility across studies; identify design and
performance strengths and challenges for research and develop-
ment; enable objective comparison of features and limitations
across devices; and aid decision makingdfor both clinicians and
end-usersdto balance expected costs and benefits.

Generalizability

Generalizability, the ability to transfer skills from trained objects
or grips to untrained but similar objects or grips, is an important
practical step toward clinical translation. We suspected it could be
achieved with MEA-BCI-FES given overlap in neural represen-
tations for GRT objects handled with similar grips16 and other
evidence that motor cortex encodes grip shape.42,57 We demon-
strated generalizability by performing ADL-like activities with
ecoder had 7 classes: hand open, peg (index-thumb pinch), fork (tight

eral grip), and video tape (palmar power grip with extended fingers).

tructions as the median of 3 trials for each test day). Scores that were

on of grips from GRT peg and 9-Hole Peg to video game pieces transfer

“Battleship” (day 1466). NOTE. See supplemental videos for BBT task

N. Austin.
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Table 1 GRASSP performance across subscales for the right upper limb with and without the BCI-FES

Item

Baseline Adaptive Grip (Day 260) BCI-FES Controlled Grip

Score Description Test Days Best Score Description n

Dorsal Sensation: Semmes-Weinstein Monofilament Testing

Hand, Digit I (C6) 1 300-kg force was detected

on 2/3 trials

260, 1357, 1476* 2 4-kg force was detected 3

Hand, Digit III (C7) 0 No force was detected 260, 1357, 1476 0 No force was detected 3

Hand, Digit V (C8) 0 No force was detected 260, 1357, 1476 0 No force was detected 3

TOTAL (Max 12) 1 (8% of normal)*; C6* 2 (17% of normal)*; C6*

Palmar Sensation: Semmes-Weinstein Monofilament Testing

Hand, Digit I (C6) 4 0.4-kg force was detected 260, 1357, 1476 4 0.4 kg-force was detected 3

Hand, Digit III (C7) 0 No force was detected 260, 1357, 1476 0 No force was detected 3

Hand, Digit V (C8) 0 No force was detected 260, 1357, 1476 0 No force was detected 3

TOTAL (Max 12) 4 (33% of normal)*; C6* 4 (33% of normal)*; C6*

Strength: MMT

MMT: Shoulder flexion (C5) 5 Full ROM against gravity,

maximum resistance

260, 1476 5y - -

MMT: Elbow flexion (C5) 5 Full ROM against gravity,

maximum resistance

260, 1476 5y - -

MMT: Elbow extension (C7) 0 No visible or palpable

contraction

260, 1476 0y - -

MMT: Wrist extension (C6) 1 Visible or palpable

contraction

265*, 1476* 5 Full ROM against gravity,

maximum resistance

2

MMT: Hand, Digit III

extension (C7)

0 No visible or palpable

contraction

265*, 1476* 5 Full ROM against gravity,

maximum resistance

2

MMT: Hand, Digit I

opposition (T1)

1 Visible or palpable

contraction (likely

fasciculations)

265, 1476 5 Full ROM against gravity,

maximum resistance

2

MMT: Hand, Digit I

flexion (C8)

0 No visible or palpable

contraction

265*, 1476* 5 Full ROM against gravity,

maximum resistance

2

MMT: Hand, Digit III

flexion (C8)

0 No visible or palpable

contraction

272*, 1476* 5 Full ROM against gravity,

maximum resistance

2

MMT: Hand, Digit V

abduction (T1)

0 No visible or palpable

contraction

272*, 1476* 3 Full ROM against gravity 2

MMT: Hand, Digit II

abduction (T1)

0 No visible or palpable

contraction

275, 1476* 2 Full ROM gravity eliminated 2

TOTAL (Max 50) 12 (24% of normal)*; C6* 40z (80% of normal)*; C8*

Prehension Ability

Cylindrical grasp 2 Moves fingers into the

prehension pattern; fails

to generate force

143*, 153*,275*,

1476*

4 Able to keep the wrist in

neutral & generate the

grasp with full thumb &

finger movement

2

Lateral key pinch 1 Moves wrist actively and

fingers passively into the

prehension pattern

275*, 1476* 4 Able to keep the wrist in

neutral & generate the

grasp with full thumb &

finger movement

2

Tip-to-tip pinch 2 Moves fingers into the

prehension pattern; fails

to generate force

278*, 1476* 3 Positions fingers and thumb

into the prehension

pattern with some force

2

TOTAL (Max 12) 5 (42% of normal)*; C5-6* 11z (92% of normal)*; C7-T1*

Prehension Performance

Pour bottle (cylindrical

grasp; 242 g)

1 <50% complete

>75 s (0 drops)

286, 1476* 5 Completed in 8 s without

difficulty 0 drops

4

Unscrew lids (spherical grasp;

small 13.6 g, large 19.0 g)

3 Completed in 47 s

Alternate grasp (0 drops)

300* 4 Completed in 51 s with

difficulty 0 drops

4

9-hole peg (tip-to-tip pinch;

0.7 g each)

1 <50% complete

>75 s (2 drops)

288*, 1073, 1434,

1438, 1476, 1478*

2 >50% complete

>75 s

0 drops (5 of 9 pegs)

11

(continued on next page)
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Table 1 (continued )

Item

Baseline Adaptive Grip (Day 260) BCI-FES Controlled Grip

Score Description Test Days Best Score Description n

Turn key in lock (lateral grip;

6.9 g)

2 >50% complete

>75 s (Multiple drops)

290 2y - -

Transfer coins (tip-to-tip

pinch; largest to smallest:

6.3 g, 4.5 g, 3.9 g, 1.8 g)

1 <50% complete

>75 s (Multiple drops)

290, 297 1y - -

Screw nuts (tip-to-tip pinch;

largest to smallest: 10.3 g,

4.6 g, 1.0 g, 0.7 g)

1 <50% complete

>75 s (1 drop)

302 1y - -

TOTAL (Max 30) 9 (30% of normal)*; C5-7* 15y (50% of normal)*; C5-7*

Total GRASSP (Max 115) 31 (27% of normal)* 72 (63% of normal)*

NOTE. International Standards for the Neurological Classification of Spinal Cord Injury sensory and motor level interpretations for subset scores are

listed with item totals. Completion times and number of drops are given for prehension performance tasks.

Abbreviations: ROM, range of motion.

* Dates (postimplant day) for best performance beyond baseline scores.
y Items could not be performed with FES.
z Change exceeds smallest real difference.30
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household objects using palmar, lateral, and tip-to-tip grip
decoders trained on GRT objects (fig 7A, supplemental video S3):
the participant mimicked brushing with a toothbrush using peg
decoder-calibrations. Similarly, the fork grip carried over to suc-
cessful use of a dinner fork to “eat” polystyrene foam “food,” the
video tape grip enabled manipulation of a book, and the can grip
enabled simulated drinking. The participant also played a 20-
minute adapted “Battleship” game using decoder-calibrations
built on GRASSP, 9-Hole-Peg, and GRT peg, dividing his focus
to strategize and win while also switching between grips for the
vertical and horizontal game boards.

Generalizability can also refer to the number of grip types
that a user can switch between using the same decoder. A lim-
itation of training minimal-class decoders for individual test
items is that additional setup time is needed to switch grips,
resulting in standardized testing that stretches across days. This
can confound effects specific to objects (eg, weight, shape) with
time effects (eg, learning) and limit opportunities for reassessing
performance over time. It also fails to address user priorities of
spontaneity, decreased setup times, and number of functions
available per decoder. For this reason, multiclass GRT decoders
were implemented16 that allowed assessment of all objects
without retraining. Performance with the multiclass decoder (see
fig 5D) was similar to the single-class decoder for some objects
(peg, weight, fork, video tape) but not others (can, block). For
block and can, the participant required more time to select the
appropriate grip decoder-calibration, reducing transfer rate in
multiclass conditions compared to simpler 1 to 2 class decoders.
The additional selection time for block was likely related to
observed overlap in cortical representation with other GRT ob-
ject or grips, and subsequent decreased separability of
Table 2 Maximum grip measured by hand-held myometry

Grip Baseline Adaptive Grip BCI-FES C

Lateral pinch 0 kg (day 279) 1.15 kg (d

Tip-to-tip pinch 0 kg (day 276) 1.35 kg*

Palmar grasp 0 kg (day 153) 2.9 kg* (d

* Change exceeds smallest real difference,35 but not minimum clinically im
decoders.16 For can, incremental multiclass decoder delays were
likely compounded when performing 2 hand states (hand open,
palmar grip) in sequence.

Motor ability

BCI-FES yielded clinically significant improvements in our par-
ticipant’s ability to manipulate objects with speed, dexterity, and
coordination (see fig 5 and 7B). This was evidenced by ARAT
change (scoreZ12), exceeding the test’s SRD48 (scoreZ5.5) and
theoretically-derived49 or experimentally-estimated47 minimum
clinically important difference (scores of 5.7 or 12, respectively).
BCI-FES improved palmar, lateral, and tip-to-tip grip force and
dexterity for objects across sizes and weights (GRASSP, ARAT).
No improvement was observed for pincer grips or fine grips with
forearm pronation and supination, due to absence of thenar elec-
trodes. BCI-FES facilitated dynamic grips (eg, palmar, lateral, tip-
to-tip grasps with transfer or reaching, and complex movements;
and palmar grip with pronation or radial deviation [GRASSP jar,
GRASSP pour, ARAT pour]); dynamic grips are essential for
ADLs and desired by end-users,20 but difficult to perform with
rigid exoskeletons, tendon transfers,24 or BCI-controlled ro-
botic arms.17,18

Motor strength on grip myometry could not be accurately
measured with the pinch gauge and hand dynamometer,
necessitating an alternate measurement method in the future.
Values obtained were consistent with individuals with tetraple-
gia using implanted FES58,59 and below age and gender
norms46 (see table 2), which was expected as SCI alters muscle
fibers, causing early fatigability and decreased maximal con-
tractile force.60
ontrolled Grip Healthy Norms Implanted FES

ay 279) 11.8 kg 0.82-2.8 kg26-28

(day 276) 8.2 kg

ay 153) 54 kg 0.21-2.8 kg26-28

portant difference.34
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Table 3 ARAT performance for the right upper limb with and without the BCI-FES

Item

Baseline

Adaptive Grip

(Day 148) BCI-FES Controlled Grip

Score Time Test Days Best Score

Time (s)

nMinimum

Average

Mean � SD Maximum

Grasp Subscale

Transfer Block 2.5 cm3* (9.1 g) 2 5.6 707y 3 4.5 6.9�2.7 12.9 22

Transfer Block 5 cm3* (91.2 g) 2 9.4 223, 227, 1274y 3 2.7 10.7�3.9 >60 10

Transfer Block 7.5 cm3* (287.6 g) 2 17.6 209, 227, 241, 258,

1274y
3 3.6 9.6�3.6 >60 10

Transfer Block 10 cm3* (>500 g) 1 >60 - 1 - - - -

Transfer Ball 7.1 cm* (142.8 g) 1 >60 209y, 234y, 237,
1274y

2 4.6 12.7�16.5 >60 12

Transfer Bar 10 � 2.5 � 1 cm* (151.8 g) 0 >60 155, 202y 3 2.9 4.6�2.6 8.5 4

TOTAL (Max 18) 8y 15y,z

Grip Subscale

Pour 7-cm cup* (146.2 g) 0 >60 840

842y
3 6.4 11.4�4.5 19.9 19

Transfer Cylinder 2.5 cm* (32.4 g) 2 37.3 833y 3 4.1 1

Transfer Cylinder 1.0 cm* (6.5 g) 2 15.2 833y 3 4.0 1

Transfer Ring 3.5 cm (9.2 g) 0 >60 - 0 - - - -

TOTAL (Max 12) 4y 9y,z

Gross Arm Movement Subscale

Hand to back of head 2 5.0 - 2 - - - -

Hand to mouth 2 1.9 - 2 - - - -

Hand on top of head 2 2.6 - 2 - - - -

TOTAL (Max 9) 6y 6y

Pinch Subscale

6-mm ball, Dig I-IV (0.9 g) 0 >60 - 0 - - - -

16-mm ball, Dig I-II (13.6 g) 0 >60 - 0 - - - -

16-mm ball, Dig I-III (13.6 g) 0 >60 - 0 - - - -

16-mm ball, Dig I-IV (13.6 g) 0 >60 - 0 - - - -

6-mm ball, Dig I-II (0.9 g) 0 >60 - 0 - - - -

6-mm ball, Dig I-III (0.9 g) 0 >60 - 0 - - - -

TOTAL (Max 18) 0y 0y

Total ARAT (Max 57) 18y 30y,z

Modified ARAT Total* (Max 27) 12y 24y

NOTE. All baseline scores were obtained on postimplant day 148. Minimum, maximum and average (SD) time to task completion and number of trials are

listed for items that could be completed with FES grips. All other items are marked with dashes (-).

Abbreviations: n, number of trials.

* Included in modified ARAT.11,12

y Dates with best item performance beyond baseline scores.
z Change exceeds smallest real difference and minimum clinically important difference for ARAT.
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BCI-FES evoked greater wrist extension strength (5 out of 5)
than has been found for individuals with C5 SCI58 (0 out of 5 to 3
out of 5), potentially due to the participant’s partially preserved
(1 out of 5) wrist extension strength. Consequently, evoked FES
stabilized his wrist against gravity without splinting, facilitating
naturalistic forearm range of motion. However, wrist stabilization
through FES risks prosthetic failure from muscle fatigue. This can
be mitigated by optimizing FES parameters61-64 and employing
spatially distributed sequential stimulation.62 We encountered
www.archives-pmr.org
fatigue-induced weakness only when stimulating for long periods
without breaks.

BCI-enabled manual dexterity and skilled object manipulation
have been reported for robotic limbs using 7 to 10 degrees of
freedom to control translation, orientation, and hand shape.17,18

BCI-robot performance on a modified BBT (<1 block/min)
was significantly slower than BCI-FES BBT performance
(8.7 blocks/min) (see fig 6). Similarly, BCI-robot transfer speed
for a cylindrical object by 2 participants (mean transfers per
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Table 4 GRT median number and interquartile range (IQR) of successful transfers and drops with and without BCI-FES

Item (Weight or Force)

Baseline Adaptive Grip BCI-FES Controlled Grip

Success

Drop

Postimplant

Day

Success Drops Median

(IQR)

Postimplant

DayMedian (IQR) Maximum Median (IQR) Maximum

Peg (1.6 g) 5.0 (0.5) 6 1.0 (0.5) 703 6.0 (1.0) 7 1.0 (0.5) 833

4.0 (1.5) 6 0.0 (0.0) 1473

Toothbrush: 10.5 g

Weight (264 g) 0.0 (0) 0 7.0 (1.5) 702 6.0 (0.5) 6 0.0 (0.5) 833

Fork (4 N) 0.0 (0) 0 1.0 (0.0) 702 5.0 (0.5) 6 0.0 (0.5) 833

6.0 (1.0) 7 0.0 (0.0) 1473

Dinner fork: 70 g

Can (214 g) 0.0 (0.5) 1 1.0 (1.0) 702 5.0 (0.5) 5 0.0 (0.0) 835

2.0 (1.5) 3 0.0 (0.5) 1476

Espresso can: 169 g

Video tape (356 g) 1.0 (0.5) 1 1.0 (1.5) 702 2.0 (1.0) 3 0.0 (1.0) 835

Hardbound book: 500 g

Block (10.6 g) 11.0 (0.25) 12 0.0 (0.0) 702 9.0 (0.5) 9 0.0 (0.0) 835

NOTE. One run for each GRT object consisted of 3 trials of 30 seconds. In each trial, the participant was asked to transfer the object as many times as

possible within the time limit. The score for that object was the median across the 3 trials.49 To quantify variability in performance across the 3 trials in

each run, we calculated the interquartile range for the run. To describe the upper limit of function observed on any one trial within the run, we report

the within-run maximum. Novel items manipulated with GRT decoders are listed below GRT items with their weights.
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min � SD: 1.09�1.09 and 5.28�1.21) was slower than GRT can
rate (7 transfers/min) with BCI-FES. In addition, BCI-FES
enabled comparatively higher modified ARAT scores
(scoreZ24) than the BCI-robotic limb17,18 (scoreZ17). Higher
scores were due to significantly faster grip and transfer speed,
which met general population norms for many ARAT objects (see
fig 6B: metal bar, cylinders, and blocks). Speed was achieved by
leveraging our participant’s preserved shoulder strength and
simplifying neural decoding into FES-calibrated grip states.

The critical advance reported here for BCI-FES is intuitive
control12 of high-performance grasp17 at naturalistic speed. BCI-
FES had previously only demonstrated rudimentary
grasping6,10-13 or slow performance11 (GRT weight rateZ1.7
transfers/min). However, observation of BBT performance with
BCI-FES on a task the participant could do at baseline
(supplemental video S4) reveals an opportunity to further improve
system speed: though grasp strength and time to transfer each block
improvedwith BCI-FES, total transfers within 60 seconds remained
below baseline rates due to delays for decoder processing and
Table 5 BBT median (interquartile range; IQR) values of successful tr

Baseline Adaptive

Postimplant Day 1

Median (IQR)

2.5-cm3 blocks (10 g) any grip 13.0 (1.5)

Transfer times: 5.3-9.9 s/block

NOTE. One run of the BBT consisted of 3 trials of 60 s. In each trial, the part

limit. The score for that day was the median across the 3 trials.49 To quantify v

interquartile range for the run. To describe the upper limit of function obser

* Change does not exceed smallest real difference (5.5).35

y Transfer time measurement started at grasp initiation, included the trans
neuromuscular stimulation. These were visible as delayed initiation
and release of block grasps when using BCI-FES.

Independence

Our participant expected home use of BCI-FES to increase inde-
pendence for self-care, toileting, and food preparation (QIF-SF,
SCIM-SR) (see fig 7C). The magnitude of his expected functional
gain was greater than those reported for myoelectrically-
controlled, implanted FES65 (CUE-T: 2.75 to 17.25) and FES-
mediated exercise in chronic SCI66 (bilateral CUE-T hand: 31.6
to 38.0; QIF-SF: 1.4 to 9.2) but similar to SCIM-SR self-care
change seen after FES-therapy in incomplete tetraplegia67 (1.9
to 12.1).

Neurologic level

Over time, the participant gained skill and coordination on
GRASSP tasks with BCI-FES. This change likely correlated with
ansfers with and without BCI-FES were equivalent*

Grip

37

BCI-FES Controlled Grip

Postimplant Day 835

Maximum Median (IQR) Maximum

13 9.0* (2.5) 11

3.0-7.5 s/blocky

icipant was asked to transfer as many blocks as possible within the time

ariability in performance across the 3 trials in each run, we calculated the

ved on any one trial within the run, we report the within-run maximum.

fer period, and stopped when the object was released.

www.archives-pmr.org

http://www.archives-pmr.org


10

20

30

40

50

60

** ** ** **

10

12

14

  2

  4

  6

  8

**

   ARAT Median Transfer Time (s)    Mean BBT / 
Modified BBT 
Transfers/60s

  Maximum 
Modified ARAT 

Scores

BCI-Robotic Arm BCI-FES on BCI-FES off

  5

10

15

20

25

Unable

A B C

Fig 6 Comparison of BCI-FES performance with BCI control of robotic limbs. A. Mean BBT speed for BCI-FES was significantly faster than BCI

control of a robotic limb on a modified BBT task using a 7.5-cm3 block,18 t5Z6.06, P<.01). However, our participant’s performance with and

without BCI-FES was equivalent, with difference between scores within the SRD (5.5) for the test. B. Median transfer speeds of BCI-FES on ARAT

items fell within general population norms (red line) for many objects38 and were significantly faster than speeds reported for BCI control of a

robotic limb18 for the bar and 2.5-cm3, 5-cm3, and 7.5-cm3 blocks, all P<.01) by Mann-Whitney U tests. (Median transfer speed for the ball did

not differ significantly between BCI-FES and the robotic limb, P>.05. Statistical tests were not conducted for the 10-cm3 block, cup, and cylinders

due to inadequate sample sizes.) C. Faster transfer speed resulted in a higher maximum modified ARAT score for BCI-FES than reported for BCI

control of a robotic limb.17,18 Performance differences between BCI-FES and our participant’s baseline as well as differences between BCI-FES and

the BCI-robotic limb were real and clinically significant; they were greater than the SRD and minimum clinically important difference for the

ARAT.49 NOTE. Figures and photographs by M. Bockbrader and N. Austin.
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use-dependent cortical plasticity under the implant, retuning
neurons to the distal limb movements he wished to evoke. By 4
years postimplant, GRASSP strength, prehension ability, and
prehension performance improvements exceeded subscale SRDs43

(see fig 5B), consistent with International Standards for the
Neurological Classification of Spinal Cord levels of C8, C7-T1,
and C5-7, respectively. Thus, BCI-FES improved the user’s
neurologic level from C5-6 to C7-T1 (see fig 7D), a clinically
important change conferring potential to live independently.
Study limitations

Findings are limited to 1 participant with a C5 American Spinal
Injury Association Impairment Scale class A SCI, and may not
generalize across tetraplegia: maximal benefit for grasp requires
some residual ability to reach and not all end-users are successful
with BCI or transcutaneous FES components.7 Clinical implica-
tions of standardized test performance should be interpreted
cautiously, because most are not normed for SCI. In addition,
clinical gains were demonstrated with test item-specific decoders
which lack multifunctionality and translational practicality,
though results appear replicable with multiclass decoders for the
GRT16 (see fig 5D). Furthermore, implications for independence
were extrapolated, rather than observed.

Multiple design challenges were revealed by functional testing,
including: suboptimal thenar stimulation; need for sensors to self-
www.archives-pmr.org
calibrate FES based on pronation state; barriers to portability and
independent setup by end users; and requirements for daily
decoder retraining. Future work should also optimize multiclass
decoders to facilitate demonstrations of GAIN that can be evalu-
ated in a single day.
Conclusions

Implanted BCI is a viable FES control mechanism for chronic
tetraplegia, performing well >4 years after MEA implantation.
With home use, BCI-FES-evoked grips are expected to confer
greater independence for self-care. Next steps will address trans-
lational barriers: (1) developing accurate, faster, performance
sustaining decoders and (2) developing wireless, portable, and
wearable components.
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a. NeuroLife brain-computer interface functional electrical stim-
ulation; Battelle.

b. Utah Array; Blackrock Microsystems.
c. Semmes-Weinstein monofilaments; Fabrication Enterprises.
d. Black Mechanical Pinch Gauge; B&L Engineering.
e. Electronic Handgrip Digital Dynamometer; Camry Scale Store.
f. MATLAB; The MathWorks, Inc.
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Table 6 Observational ratings on the CUE-T and subjective ratings on the QIF-SF and SCIM-SR

Baseline Adaptive Grip BCI-FES Controlled Grip

CUE-T (Day 532): Unilateral Items

Reach out 3 3

Reach overhead 0 0

Reach down 0 0

Reaching and Lifting (Maximum 12) 3 (25% of normal) 3 (25% of normal)

Pull light object 4 4

Pull heavy object 4 4

Push light object 4 4

Push heavy object 4 4

Pushing and Pulling (Maximum 16) 16 (100% of normal) 16 (100% of normal)

Wrist up 0 4

Palm down 4 4

Wrist Actions (Maximum 8) 4 (50% of normal) 8 (100% of normal)

Grasp hammer 0 4

Small pinch 1 4

Key pinch 0 4

Wide grasp 0 4

Manipulate coin 0 2

Push with finger 3 4

Hand and Finger Actions (Maximum 24) 4 (17% of normal) 22 (92% of normal)

CUE-T unilateral Total score (Maximum 60) 27 (45% of normal) 49* (82% of normal)

QIF-SF (Day 821)

Wash/dry hair 1 3

Supine to side 0 1

Lower body dressing 0 0

Open carton/jar 0 3

Bed to chair 0 3

Lock wheelchair 3 3

QIF-SF Total score (Maximum 24; Maximum using any device 18) 4 (13% of normal; 22% of

independent with device)

13* (54% of normal; 72% of

independent with device)

SCIM-SR (Day 532)

Feeding 2 3

Bathing

Upper body 1 1

Lower body 0 0

Dressing

Upper body 1 1

Lower body 0 0

Grooming 2 3

Self-care (Maximum 20) 6 (30% of normal) 8 (40% of normal)

Respiration 5 5

Bladder 0 3

Bowel 1 2

Toileting 0 2

Respiration and Sphincter Management (Maximum 17) 6 (30% of normal) 12 (71% of normal)

Bed mobility 0 1

Bed transfer 0 0

Bath transfer 0 0

Indoor mobility 1 1

Mobility 10-100 m 1 1

Outdoor mobility 1 1

Stairs 0 0

Car transfer 0 0

Ground transfer 0 0

Mobility (Maximum 37) 3 (8% of normal) 4 (11% of normal)

SCIM-SR Total score (Maximum 74) 15 (20% of normal) 24* (32% of normal)

NOTE. CUE-T ratings were jointly made by the participant and the research physiatrist based on observed performance in the lab of arm actions without

using the BCI-FES (baseline) and with the BCI-FES. The participant provided QIF-SF and SCIM-SR ratings for his actual baseline level of function at home

and his expected ability if he could use the BCI-FES at home. Higher scores indicate greater level of independence.

* Change exceeds minimum clinically important difference calculated as 10% of test range.
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Fig 7 The GAIN model: implications for neuroprosthetic use in daily life. A. Generalization to everyday objects. Our participant practiced with

BCI decoders and FES grips for standardized GRT objects (peg, video tape, can, “fork”) and successfully transferred these skills to grasp and

manipulate a toothbrush, hardcover book, metal dinner fork (stabbing a piece of polystyrene foam “food”), and full beverage container B. Ability

on activity measures. BCI-FES enabled our participant to form palmar, lateral, and tip-to-tip grips, but not fine pincer grips due to lack of thenar

muscle stimulation. Use of the device enabled successful object manipulation activities, like pouring and twisting, which required integration of

palmar grip with shoulder and forearm movements. Tip-to-tip grip integrated with shoulder movements was also successful, but not always faster

than the participant’s baseline performance with adaptive grips. Some tip-to-tip grips with forearm and wrist pronation and all dynamic pincer

grips were a challenge, due to lack of thenar muscle stimulation. C. Independence on functional participation measures. Our participant reported

that he expected to make gains in SCIM-SR and QIF-SF self-care, toileting, and upper limb-related mobility tasks if he could use the BCI-FES at

home. He did not expect BCI-FES to affect lower limb-related mobility tasks. Expectations for increased independence for self-care were attributed

to observed normalization of CUE-T Hand and Wrist domain abilities with BCI-FES. Overall, he reported BCI-FES in the home would allow him to

require fewer hours of home care assistance for his ADLs. D. Neurologic level of performance. Based on GRASSP norms for the International

Standards for Neurological Classification of Spinal Cord Injury neurologic levels, our participant started at C5-6 and improved to C7-T1 with BCI-

FES. This is a clinically significant improvement of upper limb motor control that confers increased independence for activities of daily living.

NOTE. See supplemental videos S1-S3. Figures by M. Bockbrader, photographs by M. Bockbrader and N. Austin, N. Annetta, and M. Zhang.
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