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Predicting task performance from upper extremity
impairment measures after cervical spinal cord injury

J Zariffa1,2,3, A Curt4, MC Verrier1,3,5, MG Fehlings6,7, S Kalsi-Ryan5,6, GRASSP Cross-Sectional Study Team
and Ontario GRASSP Longitudinal Study Team

Background: Automated sensor-based assessments of upper extremity (UE) function after cervical spinal cord injury (SCI) could
provide more detailed tracking of individual recovery profiles than is possible with existing assessments, and optimize the delivery and
assessment of new interventions. The design of reliable automated assessments requires identifying the key variables that need to be
measured to meaningfully quantify UE function. An unanswered question is to what extent measures of sensorimotor impairment can
quantitatively predict performance on functional tasks.
Objective: The objective was to define the predictive value of impairment measures for concurrent functional task performance in
traumatic cervical SCI, as measured by the Graded Redefined Assessment of Strength, Sensibility and Prehension (GRASSP).
Setting: Retrospective analysis.
Methods: A data set of 138 GRASSP assessments was analyzed. The Strength and Sensation modules were used as measures of
impairment, whereas the concurrent Prehension Performance module was used as the surrogate measure of function. Classifiers were
trained to predict the scores on each of the six individual tasks in the Prehension Performance module. The six scores were added to
obtain a total score.
Results: The Spearman’s ρ between predicted and actual total Prehension Performance scores was 0.84. Predictions using both the
Strength and Sensation scores were not found to be superior to predictions using the Strength scores alone.
Conclusions: Measures of UE motor impairment are highly predictive of functional task performance after cervical SCI. Automated
sensor-based assessments of UE motor function after SCI can rely on measuring only impairment and estimating functional
performance accordingly.
Spinal Cord (2016) 54, 1145–1151; doi:10.1038/sc.2016.77; published online 31 May 2016

INTRODUCTION

Upper extremity (UE) function is fundamental to most activities of
daily living. Cervical spinal cord injury (SCI) may result in UE
paralysis or paresis, with devastating consequences for independence,
quality of life and community participation. However, even small
amounts of UE functional recovery after SCI can have significant
implications for regaining independence.1 Developing treatment
interventions that may help restore UE function is therefore of the
utmost importance and is the focus of multiple active lines of
research.2–6 An integral part of the development of new interventions
is the ability to reveal their effectiveness, which requires a suitable
toolbox of clinical assessments.
A number of specialized clinical assessments are currently available

for measuring different aspects of UE function after SCI. Following the
terminology of the International Classification of Functioning, Dis-
ability and Health (ICF),7 assessments are often categorized as
measuring (i) body structures and functions (that is, characterizing
the impairment), (ii) activity (that is, characterizing the ability to
accomplish functional tasks) or (iii) community participation. In SCI,
the predominant assessment of body structures and function is the

International Standards for the Neurological Classification of Spinal
Cord Injury (ISNCSCI).8 SCI-specific assessments relevant to UE
activity include the Graded Redefined Assessment of Strength,
Sensibility and Prehension (GRASSP),9 the Capabilities of the Upper
Extremity Test,10 the Toronto Rehabilitation Institute Hand Function
Test11 and the Spinal Cord Independence Measure (SCIM).12 As for
the applicability of participation measures in SCI, a comprehensive
toolkit known as the Participation and Quality of Life toolkit has been
developed.13 Taken together, these clinical assessments can provide a
thorough description of UE status after SCI and help infer the inter-
relationships between ICF domains. However, they are all limited in
terms of their frequency of administration and the time of adminis-
tration post SCI. None of the tools listed would typically be
administered more often than every few weeks. Furthermore, assess-
ment outside of a clinical or laboratory setting is difficult and most
often relies on self-report using instruments such as the Capabilities of
Upper Extremity Questionnaire14 or interviews such as the SCIM.
Technological approaches that can automate the assessment of UE

function after SCI based on combinations of sensors could assist with
overcoming both of the limitations outlined: low frequency of
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assessment and lack of assessments in the community. Automated
sensor-based UE assessments (hereafter referred to as 'automated
assessments') could 'fill in the gaps' left by the current assessment tools
and have a triple benefit for advancing patient care: (i) improved
tracking of recovery in the sub-acute phase, providing the data needed
to support new strategies in individualized rehabilitation
programs;15,16 (ii) integration with telerehabilitation interventions, to
ensure appropriate therapy progression even in the absence of regular
contact with a clinician; and (iii) more efficient design of clinical trials,
through enhanced characterization of recovery profiles
longitudinally.17

To date, only a small number of studies have proposed automated
UE assessments specifically for the SCI population. These have relied
primarily on robotic rehabilitation devices18–20 and inertial measure-
ment units.21,22 Although these studies have shown that data obtained
from automated systems can have strong relationships with validated
manual clinical assessments, this field of research is still in its early
stages.
A fundamental question relevant to the development of automated

assessments is to what extent will the data recorded by a collection of
sensors be able to predict performance on a functional task? In most
cases, the quantities directly recorded by sensors will relate most
closely to body functions and impairment—for example, muscle
activation or range of motion. Task performance is a more complex
construct that depends on the integrated function of many body
systems, as well as a host of other factors (for example, environment,
compensation strategies, motivation and so on). In this study, our
objective was to evaluate how well task performance can be predicted
from measures of body function.
The GRASSP served as a framework for our investigation. The

GRASSP is a manual (that is, not sensor-based) assessment designed
specifically for UE function after cervical SCI.9,23 We use it here
because it simultaneously captures multiple constructs of interest,
which allows us to study the relationships between them. Specifically,
the GRASSP consists of three domains and five subtests. The Strength
domain (GR-str) consists of motor testing of 10 UE muscles; the
Sensation domain consists of the Dorsal Sensation (GR-ds) and
Palmar Sensation (GR-ps) subtests; the Prehension domain consists
of the Prehension Ability subtest that examines a set of grasp patterns
(GR-pa) and the Prehension Performance subtest (GR-pp) that
examines a set of functional tasks.9 By using the Strength and
Sensation (GR-ds+GR-ps=GR-sens) scores to reflect body functions,
and the GR-pp scores to reflect performance on functional tasks, we
can investigate the predictive relationships between these two con-
cepts. This study does not, in itself, describe a novel automated
assessment; rather, we seek to elucidate the underlying relationships
that will inform the development of such technology.

METHODS

GRASSP
Detailed information on the GRASSP and its properties can be found in
previous publications.9,23 We briefly review the main features of the assessment:

� The Strength domain is evaluated through manual muscle testing of 10 UE
muscles, namely the anterior deltoid, elbow flexors, elbow extensors, wrist
extensors, extensor digitorum, opponens pollicis, flexor pollicis longus, finger
flexors, finger abductors and first dorsal interossei. Each receives a score from
0 to 5, for a total GR-str score between 0 and 50 for each of the right and
left sides.

� The Sensation domain is evaluated by testing three palmar and three dorsal
finger locations with Semmes Weinstein monofilaments. Each location

receives a score from 0 to 4, resulting in GR-ps and GR-ds between 0 and
12 each and a total GR-sens score of up to 24, for each side.

� The Prehension Ability domain is evaluated by asking the individual to perform
three prehension patterns (cylindrical grasps, lateral key pinch and tip to tip
pinch). Each is scored from 0 to 4, based on active vs passive positioning of the
wrist and fingers. This results in a GR-pa score between 0 and 12 for each side.

� The Prehension Performance domain is evaluated based on six functional tasks:
namely, pouring water from a bottle, unscrewing lids from jars, performing a
pegboard task, using a key, manipulating coins and placing nuts onto screws.24

Each task is scored from 0 to 5, for a total GR-pp score between 0 and 30.

Data set
A retrospective analysis was conducted on GRASSP assessments collected
during previous longitudinal and cross-sectional studies.9,25 Where available,
comments included in the study documentation were examined prior to
analysis. We excluded from analysis any assessment in which comments
indicated factors that might have altered the relationships between muscle
strength and performance on the functional tasks—for example, pain or
additional support required for the arm to conduct the measurement. Note that
comments were not available for all records. For the longitudinal study records,
three time points were available: 4–6 weeks, 3 months and 6 months post
injury. A single time point per participant was included in the data set. We used
the 4–6-week time point, except where an examination was missing or
comments suggested that examination should be excluded, in which case we
used the 3-month time point. For cross-sectional study records, a single time
point was available, and all participants had chronic injuries (ranging from
6 months to 20 years post injury). The use of mixed time points is beneficial in
building a heterogeneous data set that will produce robust classifiers (see next
section). The right arm was used in all cases, such that a single assessment was
used per individual, with no preference for hand dominance.

Classifier design
Hereafter, we refer to measures corresponding to the 'body functions and
structures' component of the ICF classification as measures of 'impairment' and
to measures corresponding to the 'activities' component of the ICF as measures
of 'task performance'.
We used a machine learning approach to capture the relationships between

impairment and task performance. Our objective was to design a classifier that
accepts measures of impairment as input and produces a task performance
score as output. Thus, we selected as our inputs the GR-str scores (10 manual
motor testing values, see above) and the GR-sens scores (6 values from
monofilament testing).
The outputs were the GR-pp scores from the six tasks of the GR-pp module.9

We built a separate classifier for each of the six tasks. Each task is scored on a
scale from 0 to 5, and therefore each classifier had to assign a given input to one
of the six classes (that is, a score of 0, 1, 2, 3, 4 or 5). The outputs of all six
classifiers were summed to produce a total GR-pp score. The total GR-pp score
has been shown previously to correlate strongly with independence in activities
of daily living, as measured by the SCIM Self-Care sub-score.26 A diagram
summarizing the prediction process is shown in Figure 1.
We constructed two versions of each classifier: one using only the Strength

scores as inputs, and one using both Strength and Sensation scores as inputs. A
comparison of these two approaches was conducted to determine whether
information about sensory function was essential for predicting task performance.
Random Forest classifiers27 were used, using 50 trees. The minimum number

of observations per leaf was set to 2. A Random Forest is a collection of decision
trees trained on random subsets of data; to classify a new observation, a
majority vote is used among all the trees. Although individual trees have only
limited prediction abilities, the ensemble of trees as a whole forms an effective
classifier. Random Forests are a popular method because of their relative
simplicity combined with good performance on a wide variety of problems.

Classifier training and evaluation
Leave-one-out cross-validation was used to train the classifiers and test their
performance. The following performance metrics were used:
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� Error between predicted and actual scores in each of the six individual
classifiers.

� Error between predicted and actual total GR-pp scores.
� Spearman’s rank correlation coefficient (Spearman’s ρ) between predicted
and actual total GR-pp scores.

Post hoc analysis
As noted above, not all entries in the data set contained complete comments.
Information may thus have been missing about factors that could have affected
the impairment-to-task performance relationship (for example, pain). Our next
step was designed to minimize the impact of such confounding factors.
We assumed that if a confounding factor was present, the performance of the
classifiers would suffer. We therefore identified outliers in the results of the
analysis described above, removed them from the data set and re-trained
the classifiers on this reduced data set. This process was repeated until no
outliers remained. For the purposes of eliminating entries from the data set, an
outlier was defined as a data point for which the absolute error between the
predicted and actual total GR-pp score was greater than 15 points (that is, half
the maximum possible score). The analysis on the final reduced data set is
referred to as the post hoc analysis.

Comparison with predictions from neurological and motor levels
Finally, to confirm that the prediction of functional task performance does
indeed require fine-grained information about impairment, we compared the
prediction performance of the classifiers described above with the performance
that would be achieved simply based on the ISNCSCI neurological level of injury
or the right-side motor level. For each individual in the data set, the predicted
score for each of the six GR-pp tasks was set to the rounded mean score for that
task among all individuals with the same neurological level in the data set. The
total GR-pp scores were then computed, and the Spearman’s ρ between these
predicted scores and the true total GR-pp scores was determined. The analysis
was repeated using the right-side motor level instead of the neurological level.

RESULTS

Data set
The retrospective analysis of the available data yielded records from
138 study participants, 53 from the longitudinal study and 85 from the
cross-sectional study. After examining the available comment fields for
these assessments, nine participants were excluded. Reasons included
shoulder restrictions due to injury, pain or both; additional support

provided to the arm during the manipulation tasks (for example, right
arm supported by the left arm); motor scores evaluated on a restricted
range of motion; significant spasticity in the UE; and scores of 0
assigned without the participants having actually attempted the task.
In an additional two participants, the 4–6-week assessment was
missing; hence, the 3-month assessments were used. As a result, 129
assessments were included in the data set, each corresponding to a
separate individual. The neurological level of injury of the included
participants ranged from C1 to T1, and their severities from American
Spinal Injury Association Impairment Scale (AIS) A to D.9,25

Prediction of prehension performance sub-scores
Figure 2 shows the distribution of errors obtained in predicting the
GR-pp sub-scores using only the GR-str scores as inputs. Out of 774
predictions (129 assessments × 6 sub-scores, obtained by collecting all
of the test sets from the cross-validation process), 444 were correct
(57.4%), 158 (20.4%) differed from the correct score by 1 point and
172 (22.2%) differed by 2 or more points. Thus, 77.8% were within 1
point of the correct score on a 0 to 5 scale.
When both the GR-str and GR-sens scores were included as inputs

to the classifiers, 448 predictions were correct (57.9%), 153 (19.8%)
differed from the correct score by 1 point, and 173 (22.3%) differed by
2 or more points. A χ2 test comparing the error distributions when
using only the GR-str scores and when using both the GR-str and GR-
sens scores revealed no significant difference (P= 0.95).

Prediction of prehension performance total scores
Figure 3a shows a scatter plot of the predicted vs actual total GR-pp
scores, obtained by summing the outputs of the six classifiers. The
Spearman’s ρ between the actual and predicted scores was 0.84.
Figure 3b shows the errors between actual and predicted total scores
for all entries in the data set. The median error was 0 (IQR=− 2–3)
on a 30-point scale. The data in these figures correspond to using only
the GR-str scores as the classifier input.
When both the GR-str and GR-sens scores were included as inputs

to the classifiers, the median error was 0 (IQR=− 2–4), which was not
significantly different than when GR-str only was used (P= 0.66 using
a Wilcoxon rank sum test). The Spearman’s ρ between the actual and
predicted scores when using both GR-str and GR-sens was 0.84.

Classifier 1

Motor Evaluation
(10 variables)

Sensory Evaluation
(6 variables)

Classifier 6

Classifier 2 Total GR-pp Score

Motor Evaluation
(10 variables)

Sensory Evaluation
(6 variables)

Motor Evaluation
(10 variables)

Sensory Evaluation
(6 variables)

Prehension
Performance Task 1

Prehension
Performance Task 2

Prehension
Performance Task 6

Figure 1 Flow diagram for prediction of GR-pp sub-scores and total scores. Note that the same motor and sensory inputs are provided to all six classifiers.
Each classifier produces an output with a value of 0, 1, 2, 3, 4 or 5. The total score is the sum of these outputs and is thus an integer value between 0
and 30.
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Post hoc analysis
After the analysis of the total score predictions, six outliers were
identified and removed, as per the definition in the Methods. These
outliers were based on the classifiers using only GR-str scores as inputs.
The analysis was repeated on the reduced data set, and the results
contained two outliers. These were again removed and the analysis
repeated. After this third pass, no more outliers were found. The final
reduced data set therefore contained 121 assessments, compared with
129 in the original data set (that is, 6.2% of the data were removed).

The GR-str and GR-pp scores of the removed outliers are provided in
the Supplementary Materials (Supplementary Table S1).
Figure 4 provides the analogous results to Figure 2 for the classifiers

re-trained on the reduced data set, using only the GR-str scores as
inputs. Out of 726 predictions (121 assessments × 6 sub-scores), 452
were correct (62.3%), 148 (20.4%) differed from the correct score by 1
point and 126 (17.4%) differed by 2 or more points, resulting in 82.7%
predictions within 1 point of the correct score. When both GR-str and
GR-sens scores were used as inputs, the error distribution was 60.3%
with no error, 20.7% with a 1-point error and 19.0% with an error of 2
or more points. Once again, a χ2 test revealed no significant difference
between the performance of the two input strategies (P= 0.92).
Figure 5 provides the analogous results to Figure 3 for the classifiers

re-trained on the reduced data set, using only the GR-str inputs. In
this case, the median error was 0 (IQR=− 2–3), and the Spearman’s ρ
was 0.92. When both the GR-str and GR-sens scores were included as
inputs to the classifiers, the median error was 0 (IQR=− 2–4), which
was not significantly different than when GR-str only was used
(P= 0.94 using a Wilcoxon rank sum test). The Spearman’s ρ when
using both GR-str and GR-sens was 0.91.

Comparison with predictions from neurological and motor levels
The breakdown of neurological levels in the data set used was 8 entries
with C1, 8 with C2, 8 with C3, 39 with C4, 23 with C5, 20 with C6, 6
with C7, 2 with C8 and 1 with T3. GR-pp total score predictions based
only on the neurological level yielded a Spearman’s ρ of 0.16.
When using the right motor level, the breakdown in the data set

was 3 entries with C1, 3 with C2, 2 with C3, 12 with C4, 25 with C5,
33 with C6, 21 with C7, 5 with C8, 8 with T1, 1 with L5 and 2 with S1,
and the Spearman’s ρ obtained was 0.35.
Fourteen entries out of 129 were excluded from these analyses of

the neurological and motor level predictive abilities, because of
missing ISNCSCI data.

DISCUSSION

This study demonstrated that functional task performance can be
predicted with high accuracy from upper limb motor impairment, in
unilateral UE tasks after SCI. Using the GRASSP assessment as a

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

20

40

60

80

Score error

# 
of

 a
ss

es
sm

en
ts

GR-pp Task 1 (Water Bottle)

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

20

40

60

80

Score error

# 
of

 a
ss

es
sm

en
ts

GR-pp Task 2 (Jars)

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

20

40

60

80

Score error

# 
of

 a
ss

es
sm

en
ts

GR-pp Task 3 (Key)

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

20

40

60

80

Score error

# 
of

 a
ss

es
sm

en
ts

GR-pp Task 4 (Pegs)

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

20

40

60

80

Score error

# 
of

 a
ss

es
sm

en
ts

GR-pp Task 5 (Coins)

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

20

40

60

80

Score error

# 
of

 a
ss

es
sm

en
ts

GR-pp Task 6 (Nuts)

Figure 2 Histograms of errors between the actual and predicted sub-scores, for each of the six classifiers. The results in this figure correspond to the pre-
planned analysis. A full color version of this figure is available at the Spinal Cord journal online.
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Figure 3 (a) Predicted vs actual total GR-pp scores. (b) Error between the
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version of this figure is available at the Spinal Cord journal online.
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framework for this investigation, we found a very strong correlation
between the predicted and true total GR-pp scores, as indicated by a
Spearman’s ρ of 0.84. We further investigated whether predictions
based on both motor and sensory evaluations would be more
successful than predictions based on motor evaluations alone but
did not find this to be the case. We additionally demonstrated that a
fine-grained description of impairment is beneficial for predicting task
performance, by showing that predictions based only on neurological
or motor levels were substantially poorer.

Implications for automated assessments of UE function
Our results have important implications in two areas. The first of these is
the development of sensor-based automated assessments of UE function
after SCI. In particular, our findings can inform the choice of variables
that automated systems need to measure. If predicting functional task
performance from impairment was not feasible, automated assessments
would require highly sophisticated or specialized systems able to interpret
complex movements and evaluate their quality. However, our results
suggest that these complex approaches may be unnecessary: because task
performance can be predicted from impairment in this context,
automated systems need only to measure impairment. Therefore,
combinations of existing and flexible technologies, such as dynam-
ometers and low-cost motion capture systems, could form the basis for
effective automated assessments of UE function after SCI, provided that
strategies to manage confounding factors could be put into place.
Our findings regarding the need for sensory information are also

encouraging. Although sensory function is fundamental to a complete
neurological assessment, as well as to effective prehension,28,29 we
focused here on a more restricted question. We sought to establish
whether sensory information added substantially to motor informa-
tion for predicting functional task performance within the resolution
of the GRASSP. We found that it did not. If sensory function was in
fact required for these predictions, it would be detrimental to the
development of automated assessments, as sensory evaluation requires
a degree of conversation and interaction with the individual under
evaluation, which would not be feasible in a reliable manner with an
automated system. Our results on this point therefore further support
the feasibility of automated assessments. In our analysis, the inclusion
of sensory information actually resulted in a very slight decrease in
performance compared with using the motor information alone; this
phenomenon could be the result of the increased dimensionality of the
classifier inputs, leading to some possible model overfitting.
When comparing the prediction performance for each of the six

tasks in the GR-pp module (Figures 2 and 4), no strong trends were
noted. Slightly higher errors were observed for coin handling and
putting nuts on screws (tasks 5 and 6), whereas the best performance
was found for the water bottle and jar lid tasks (tasks 1 and 2),
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Figure 4 Histograms of errors between the actual and predicted sub-scores, for each of the six classifiers. The results in this figure correspond to the post
hoc analysis. A full color version of this figure is available at the Spinal Cord journal online.
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Figure 5 (a) Predicted vs actual total GR-pp scores. (b) Error between the
predicted and actual total score for each of the assessments in the data set.
The results in this figure correspond to the post hoc analysis. A full color
version of this figure is available at the Spinal Cord journal online.
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indicating that performance on tasks requiring fine manipulation may
be harder to predict from the data available here.
The number of studies that have investigated automated UE assess-

ments in SCI is so far relatively small. Our group previously found that
range-of-motion and grip strength measures from the ArmeoSpring
rehabilitation device could be used to predict concurrent scores from the
GRASSP, SCIM and the Action Research Arm Test (ARAT), with
adjusted R2 values ranging from 0.54 to 0.78.18 Those results are
consistent with the findings reported here. Keller et al.20 have used the
ARMin robot to quantify the psychometric properties of data collected
by the device, including range-of-motion, reachable workspace, quality
of movement, joint torques and joint stiffness. They concluded that
measures from the ARMin would be suitable for inclusion in automated
assessments of UE function after SCI. Prochazka and Kowalczewski19

proposed an automated test, based on the ReJoyce rehabilitation robot,
and found a strong relationship with the ARAT (R2=0.88). Their
approach is a good example of an automated system designed to
measure task performance directly: the robot includes a specialized
manipulandum replicating several common grip tasks (cylindrical grasp,
key grip and so on). Trincado-Alonso and colleagues21 have correlated
UE kinematic measurements from inertial measurement units with
clinical scales, whereas Popp et al.22 used inertial measurement units to
monitor active propulsion during wheelchair use after SCI. The number
of related studies conducted in clinical populations other than SCI is
higher (a review is available in the study by de los Reyes-Guzman et al.,30

with the majority of studies focusing on stroke), but the feasibility of
generalizing automated approaches across populations has previously
been put in doubt.18

Implications for the interpretation of manual assessments of UE
function
The second implication of our results is in the interpretation and use
of manual assessments of UE function, such as the GRASSP. The
finding that impairment can accurately predict functional task
performance can enrich the interpretation of motor testing scores
and help better understand their implications. Likewise, the ability to
predict how motor recovery in specific muscles is likely to affect
functional performance has important implications for the planning of
care and interventions. This ability may also lead to the development
of reduced or adaptive versions of UE assessments, in which motor
testing can inform which aspects of function need to be tested in more
detail. Finally, characterizing the relationships between impairment
and functional task performance is needed to guide the development
of more effective interventions and is therefore of broad interest to
both scientists and clinicians in the fields of SCI and rehabilitation.

Sources of variability in the data
We used a data set containing assessments from individuals with a wide
range of characteristics, including varied injury levels, AIS grades, times
since injury and hand dominance. The size of the retrospective data set is
much larger than the sample sizes used in the automated assessment
studies listed above. The use of such a large and heterogeneous
population is beneficial in allowing the classifiers to identify robust
relationships that will remain valid for a wide range of individuals.
The improved results of the post hoc analysis compared with the initial

attempt suggest that confounding factors may cause an assessment to
significantly deviate from the relationships captured in the classifiers.
After removing a small number of outliers, corresponding to only 6.2%
of the data set, performance improved noticeably, with the Spearman’s ρ
for the total scores increasing from 0.84 to 0.92. The outliers likely
correspond to evaluations that should have been excluded but were not

identified because of insufficient comments in the records. The outlier
scores are listed in Supplementary Table S1 and support the notion that
confounding factors were present, as many of the scores are counter-
intuitive (for example, lower than expected GR-pp scores given the
GR-str scores or vice versa). Factors that could have contributed to these
outliers in the data include additional support provided to the right arm
during manipulation tasks, movement restrictions resulting from pain or
other injuries, or irregularities in scoring. Although the use of a post hoc
analysis with outliers removed may raise questions about the general-
izability of the results, the initial analysis with the outliers included still
revealed an excellent correlation between the predicted and actual total
GR-pp scores. As a result, none of our conclusions are contingent on the
post hoc analysis. We have included it rather in an effort to quantify how
our results may have been impacted by the use of retrospective data, as
the data collection procedures were not tailored specifically to the
question investigated here.
Even assuming that all potential confounding factors have been

removed from the data set, substantial variability is still expected to
remain in the relationship between impairment and functional task
performance. Compensatory movement strategies are expected to have
a role, as is the fact that the GRASSP can only capture partial
information: not all muscles in the UE are measured, and GR-str,
GR-sens and GR-pp scores all rely on ordinal scales that by definition
are limited in their resolution. Participant motivation and fatigue may
also have a role. These factors can explain the instances where our
predictions had large errors. Further work will be required to identify
additional variables that can improve the predictive performance and
reduce the number of cases where large errors are observed. At the
same time, our results demonstrated that prediction of functional task
performance from impairment measures is possible to a significant
degree even with classifiers that do not incorporate any of the factors
just listed. This finding is novel and of great relevance to the
development of automated assessments.

Limitations
This study was conducted using a retrospective data set, which limited
our ability to control exactly how the GRASSP assessments were
performed. For example, in participants with proximal weakness but
some preserved distal function (such as a central cord injury), the arm
was sometimes supported so that the hand could be tested. Although
this was judged acceptable for the purposes of validating the GRASSP,
it could skew the results of our classifiers, which might believe based
on the motor scores that the individual cannot reach forward and
possibly conclude that low scores should be ascribed for all of the
tasks. Including such an assessment in our analysis would weaken the
ability of the machine learning to identify meaningful relationships.
The inconsistent presence of notes in the data set made it impossible
to define precise a priori rules for the inclusion or exclusion of entries.
The post hoc analysis was intended to mitigate these factors, but cannot
guarantee that all data points were excluded that should have been, or
that some outliers were not simply owing to natural variability.
We further emphasize that the post hoc analysis was conducted

solely to compensate for the use of a retrospective data set containing
entries skewed by confounding factors. In a prospective study, these
data points would have been eliminated before analysis through
exclusion criteria. The removal of outliers is not intended to imply
that the proposed prediction methods are applicable only to spinal
cord injuries with certain neurological characteristics but not others.
The use of the GRASSP limits our investigation to types of

functional performance that are included in that assessment. For
instance, bi-manual task performance is not within the scope of the
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present analysis. However, our objective was to determine the extent
to which fundamental relationships between impairment and func-
tional performance could be captured through machine learning. Now
that this has been established, the prediction of performance on
specific types of functions or tasks will require the development of
automated assessments tailored to the context of interest.

CONCLUSION

The ability to perform unilateral functional UE tasks after SCI can be
predicted from motor testing scores (Spearman’s ρ of 0.84 between
predicted and actual total GR-pp scores or 0.92 in the post hoc analysis
with outliers removed). This finding provides insight into the
relationships between impairment and functional performance after
SCI. Indeed, these results have important implications for the
development of automated assessments of UE function after SCI,
because the findings suggest that it is not necessary for such systems to
address the difficult task of measuring functional task performance
directly. Rather, systems that rely on measures of impairment
(strength, range of motion) obtainable using existing technology could
be feasible. Automated UE assessments will have benefits in optimizing
rehabilitation in the sub-acute phase of injury, supporting telerehabil-
itation interventions and designing more efficient clinical trials.
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